#include "GLCompute.h" #include "Utilities/StrUtil.h" namespace gl { void compute_task::initialize() { // Set up optimal kernel size const auto& caps = gl::get_driver_caps(); if (caps.vendor_AMD || caps.vendor_MESA) { optimal_group_size = 64; unroll_loops = false; } else if (caps.vendor_NVIDIA) { optimal_group_size = 32; } else { optimal_group_size = 128; } glGetIntegeri_v(GL_MAX_COMPUTE_WORK_GROUP_COUNT, 0, reinterpret_cast(&max_invocations_x)); } void compute_task::create() { if (!compiled) { m_shader.create(::glsl::program_domain::glsl_compute_program, m_src); m_shader.compile(); m_program.create(); m_program.attach(m_shader); m_program.link(); compiled = true; } } void compute_task::destroy() { if (compiled) { m_program.remove(); m_shader.remove(); compiled = false; } } void compute_task::run(u32 invocations_x, u32 invocations_y) { GLint old_program; glGetIntegerv(GL_CURRENT_PROGRAM, &old_program); bind_resources(); m_program.use(); glDispatchCompute(invocations_x, invocations_y, 1); glUseProgram(old_program); } void compute_task::run(u32 num_invocations) { u32 invocations_x, invocations_y; if (num_invocations <= max_invocations_x) [[likely]] { invocations_x = num_invocations; invocations_y = 1; } else { // Since all the invocations will run, the optimal distribution is sqrt(count) const u32 optimal_length = static_cast(floor(std::sqrt(num_invocations))); invocations_x = optimal_length; invocations_y = invocations_x; if (num_invocations % invocations_x) invocations_y++; } run(invocations_x, invocations_y); } cs_shuffle_base::cs_shuffle_base() { work_kernel = " value = data[index];\n" " data[index] = %f(value);\n"; loop_advance = " index++;\n"; suffix = "}\n"; } void cs_shuffle_base::build(const char* function_name, u32 _kernel_size) { // Initialize to allow detecting optimal settings initialize(); kernel_size = _kernel_size? _kernel_size : optimal_kernel_size; m_src = "#version 430\n" "layout(local_size_x=%ws, local_size_y=1, local_size_z=1) in;\n" "layout(binding=%loc, std430) buffer ssbo{ uint data[]; };\n" "%ub" "\n" "#define KERNEL_SIZE %ks\n" "\n" "// Generic swap routines\n" "#define bswap_u16(bits) (bits & 0xFF) << 8 | (bits & 0xFF00) >> 8 | (bits & 0xFF0000) << 8 | (bits & 0xFF000000) >> 8\n" "#define bswap_u32(bits) (bits & 0xFF) << 24 | (bits & 0xFF00) << 8 | (bits & 0xFF0000) >> 8 | (bits & 0xFF000000) >> 24\n" "#define bswap_u16_u32(bits) (bits & 0xFFFF) << 16 | (bits & 0xFFFF0000) >> 16\n" "\n" "// Depth format conversions\n" "#define d24f_to_f32(bits) (bits << 7)\n" "#define f32_to_d24f(bits) (bits >> 7)\n" "\n" "uint linear_invocation_id()\n" "{\n" " uint size_in_x = (gl_NumWorkGroups.x * gl_WorkGroupSize.x);\n" " return (gl_GlobalInvocationID.y * size_in_x) + gl_GlobalInvocationID.x;\n" "}\n" "\n" "%md" "void main()\n" "{\n" " uint invocation_id = linear_invocation_id();\n" " uint index = invocation_id * KERNEL_SIZE;\n" " uint value;\n" " %vars" "\n"; const std::pair syntax_replace[] = { { "%loc", std::to_string(GL_COMPUTE_BUFFER_SLOT(0)) }, { "%ws", std::to_string(optimal_group_size) }, { "%ks", std::to_string(kernel_size) }, { "%vars", variables }, { "%f", function_name }, { "%ub", uniforms }, { "%md", method_declarations } }; m_src = fmt::replace_all(m_src, syntax_replace); work_kernel = fmt::replace_all(work_kernel, syntax_replace); if (kernel_size <= 1) { m_src += " {\n" + work_kernel + " }\n"; } else if (unroll_loops) { work_kernel += loop_advance + "\n"; m_src += std::string ( " //Unrolled loop\n" " {\n" ); // Assemble body with manual loop unroll to try loweing GPR usage for (u32 n = 0; n < kernel_size; ++n) { m_src += work_kernel; } m_src += " }\n"; } else { m_src += " for (int loop = 0; loop < KERNEL_SIZE; ++loop)\n"; m_src += " {\n"; m_src += work_kernel; m_src += loop_advance; m_src += " }\n"; } m_src += suffix; } void cs_shuffle_base::bind_resources() { m_data->bind_range(gl::buffer::target::ssbo, GL_COMPUTE_BUFFER_SLOT(0), m_data_offset, m_data_length); } void cs_shuffle_base::run(const gl::buffer* data, u32 data_length, u32 data_offset) { m_data = data; m_data_offset = data_offset; m_data_length = data_length; const auto num_bytes_per_invocation = optimal_group_size * kernel_size * 4; const auto num_bytes_to_process = utils::align(data_length, num_bytes_per_invocation); const auto num_invocations = num_bytes_to_process / num_bytes_per_invocation; if ((num_bytes_to_process + data_offset) > data->size()) { // Technically robust buffer access should keep the driver from crashing in OOB situations rsx_log.error("Inadequate buffer length submitted for a compute operation." "Required=%d bytes, Available=%d bytes", num_bytes_to_process, data->size()); } compute_task::run(num_invocations); } cs_shuffle_d32fx8_to_x8d24f::cs_shuffle_d32fx8_to_x8d24f() { uniforms = "uniform uint in_ptr, out_ptr;\n"; variables = " uint in_offset = in_ptr >> 2;\n" " uint out_offset = out_ptr >> 2;\n" " uint depth, stencil;\n"; work_kernel = " depth = data[index * 2 + in_offset];\n" " stencil = data[index * 2 + (in_offset + 1)] & 0xFFu;\n" " value = f32_to_d24f(depth) << 8;\n" " value |= stencil;\n" " data[index + out_ptr] = bswap_u32(value);\n"; cs_shuffle_base::build(""); } void cs_shuffle_d32fx8_to_x8d24f::bind_resources() { m_data->bind_range(gl::buffer::target::ssbo, GL_COMPUTE_BUFFER_SLOT(0), m_data_offset, m_ssbo_length); } void cs_shuffle_d32fx8_to_x8d24f::run(const gl::buffer* data, u32 src_offset, u32 dst_offset, u32 num_texels) { u32 data_offset; if (src_offset > dst_offset) { data_offset = dst_offset; m_ssbo_length = (src_offset + num_texels * 8) - data_offset; } else { data_offset = src_offset; m_ssbo_length = (dst_offset + num_texels * 4) - data_offset; } m_program.uniforms["in_ptr"] = src_offset - data_offset; m_program.uniforms["out_ptr"] = dst_offset - data_offset; cs_shuffle_base::run(data, num_texels * 4, data_offset); } cs_shuffle_x8d24f_to_d32fx8::cs_shuffle_x8d24f_to_d32fx8() { uniforms = "uniform uint texel_count, in_ptr, out_ptr;\n"; variables = " uint in_offset = in_ptr >> 2;\n" " uint out_offset = out_ptr >> 2;\n" " uint depth, stencil;\n"; work_kernel = " value = data[index + in_offset];\n" " value = bswap_u32(value);\n" " stencil = (value & 0xFFu);\n" " depth = (value >> 8);\n" " data[index * 2 + out_offset] = d24f_to_f32(depth);\n" " data[index * 2 + (out_offset + 1)] = stencil;\n"; cs_shuffle_base::build(""); } void cs_shuffle_x8d24f_to_d32fx8::bind_resources() { m_data->bind_range(gl::buffer::target::ssbo, GL_COMPUTE_BUFFER_SLOT(0), m_data_offset, m_ssbo_length); } void cs_shuffle_x8d24f_to_d32fx8::run(const gl::buffer* data, u32 src_offset, u32 dst_offset, u32 num_texels) { u32 data_offset; if (src_offset > dst_offset) { data_offset = dst_offset; m_ssbo_length = (src_offset + num_texels * 4) - data_offset; } else { data_offset = src_offset; m_ssbo_length = (dst_offset + num_texels * 8) - data_offset; } m_program.uniforms["in_ptr"] = src_offset - data_offset; m_program.uniforms["out_ptr"] = dst_offset - data_offset; cs_shuffle_base::run(data, num_texels * 4, data_offset); } }