#pragma once #include "PPCThread.h" #include "Emu/Event.h" #include "MFC.h" enum SPUchannels { SPU_RdEventStat = 0, //Read event status with mask applied SPU_WrEventMask = 1, //Write event mask SPU_WrEventAck = 2, //Write end of event processing SPU_RdSigNotify1 = 3, //Signal notification 1 SPU_RdSigNotify2 = 4, //Signal notification 2 SPU_WrDec = 7, //Write decrementer count SPU_RdDec = 8, //Read decrementer count SPU_RdEventMask = 11, //Read event mask SPU_RdMachStat = 13, //Read SPU run status SPU_WrSRR0 = 14, //Write SPU machine state save/restore register 0 (SRR0) SPU_RdSRR0 = 15, //Read SPU machine state save/restore register 0 (SRR0) SPU_WrOutMbox = 28, //Write outbound mailbox contents SPU_RdInMbox = 29, //Read inbound mailbox contents SPU_WrOutIntrMbox = 30, //Write outbound interrupt mailbox contents (interrupting PPU) }; enum MFCchannels { MFC_WrMSSyncReq = 9, //Write multisource synchronization request MFC_RdTagMask = 12, //Read tag mask MFC_LSA = 16, //Write local memory address command parameter MFC_EAH = 17, //Write high order DMA effective address command parameter MFC_EAL = 18, //Write low order DMA effective address command parameter MFC_Size = 19, //Write DMA transfer size command parameter MFC_TagID = 20, //Write tag identifier command parameter MFC_Cmd = 21, //Write and enqueue DMA command with associated class ID MFC_WrTagMask = 22, //Write tag mask MFC_WrTagUpdate = 23, //Write request for conditional or unconditional tag status update MFC_RdTagStat = 24, //Read tag status with mask applied MFC_RdListStallStat = 25, //Read DMA list stall-and-notify status MFC_WrListStallAck = 26, //Write DMA list stall-and-notify acknowledge MFC_RdAtomicStat = 27, //Read completion status of last completed immediate MFC atomic update command }; enum SPUEvents { SPU_EVENT_MS = 0x1000, // multisource synchronization event SPU_EVENT_A = 0x800, // privileged attention event SPU_EVENT_LR = 0x400, // lock line reservation lost event SPU_EVENT_S1 = 0x200, // signal notification register 1 available SPU_EVENT_S2 = 0x100, // signal notification register 2 available SPU_EVENT_LE = 0x80, // SPU outbound mailbox available SPU_EVENT_ME = 0x40, // SPU outbound interrupt mailbox available SPU_EVENT_TM = 0x20, // SPU decrementer became negative (?) SPU_EVENT_MB = 0x10, // SPU inbound mailbox available SPU_EVENT_QV = 0x4, // MFC SPU command queue available SPU_EVENT_SN = 0x2, // MFC list command stall-and-notify event SPU_EVENT_TG = 0x1, // MFC tag-group status update event SPU_EVENT_IMPLEMENTED = SPU_EVENT_LR, }; enum { SPU_RUNCNTL_STOP = 0, SPU_RUNCNTL_RUNNABLE = 1, }; enum { SPU_STATUS_STOPPED = 0x0, SPU_STATUS_RUNNING = 0x1, SPU_STATUS_STOPPED_BY_STOP = 0x2, SPU_STATUS_STOPPED_BY_HALT = 0x4, SPU_STATUS_WAITING_FOR_CHANNEL = 0x8, SPU_STATUS_SINGLE_STEP = 0x10, }; enum : u32 { SYS_SPU_THREAD_BASE_LOW = 0xf0000000, SYS_SPU_THREAD_BASE_MASK = 0xfffffff, SYS_SPU_THREAD_OFFSET = 0x00100000, SYS_SPU_THREAD_SNR1 = 0x05400c, SYS_SPU_THREAD_SNR2 = 0x05C00c, }; enum { MFC_LSA_offs = 0x3004, MFC_EAH_offs = 0x3008, MFC_EAL_offs = 0x300C, MFC_Size_Tag_offs = 0x3010, MFC_Class_CMD_offs = 0x3014, MFC_CMDStatus_offs = 0x3014, MFC_QStatus_offs = 0x3104, Prxy_QueryType_offs = 0x3204, Prxy_QueryMask_offs = 0x321C, Prxy_TagStatus_offs = 0x322C, SPU_Out_MBox_offs = 0x4004, SPU_In_MBox_offs = 0x400C, SPU_MBox_Status_offs = 0x4014, SPU_RunCntl_offs = 0x401C, SPU_Status_offs = 0x4024, SPU_NPC_offs = 0x4034, SPU_RdSigNotify1_offs = 0x1400C, SPU_RdSigNotify2_offs = 0x1C00C, }; //Floating point status and control register. Unsure if this is one of the GPRs or SPRs //Is 128 bits, but bits 0-19, 24-28, 32-49, 56-60, 64-81, 88-92, 96-115, 120-124 are unused class FPSCR { public: u64 low; u64 hi; FPSCR() {} std::string ToString() const { return "FPSCR writer not yet implemented"; //fmt::Format("%08x%08x%08x%08x", _u32[3], _u32[2], _u32[1], _u32[0]); } void Reset() { memset(this, 0, sizeof(*this)); } //slice -> 0 - 1 (4 slices total, only two have rounding) //0 -> round even //1 -> round towards zero (truncate) //2 -> round towards positive inf //3 -> round towards neg inf void setSliceRounding(u8 slice, u8 roundTo) { u64 mask = roundTo; switch(slice) { case 0: mask = mask << 20; break; case 1: mask = mask << 22; break; } //rounding is located in the low end of the FPSCR this->low = this->low & mask; } //Slice 0 or 1 u8 checkSliceRounding(u8 slice) const { switch(slice) { case 0: return this->low >> 20 & 0x3; case 1: return this->low >> 22 & 0x3; default: throw fmt::Format("Unexpected slice value in FPSCR::checkSliceRounding(): %d", slice); return 0; } } //Single Precision Exception Flags (all 3 slices) //slice -> slice number (0-3) //exception: 1 -> Overflow 2 -> Underflow 4-> Diff (could be IE^3 non compliant) void setSinglePrecisionExceptionFlags(u8 slice, u8 exception) { u64 mask = exception; switch(slice) { case 0: mask = mask << 29; this->low = this->low & mask; break; case 1: mask = mask << 61; this->low = this->low & mask; break; case 2: mask = mask << 29; this->hi = this->hi & mask; break; case 3: mask = mask << 61; this->hi = this->hi & mask; break; } } }; union SPU_GPR_hdr { u32 _u32[4]; float _f[4]; u128 _u128; s128 _i128; __m128 _m128; __m128i _m128i; u64 _u64[2]; s64 _i64[2]; s32 _i32[4]; u16 _u16[8]; s16 _i16[8]; u8 _u8[16]; s8 _i8[16]; double _d[2]; SPU_GPR_hdr() {} std::string ToString() const { return fmt::Format("%08x%08x%08x%08x", _u32[3], _u32[2], _u32[1], _u32[0]); } void Reset() { memset(this, 0, sizeof(*this)); } }; union SPU_SNRConfig_hdr { u64 value; SPU_SNRConfig_hdr() {} std::string ToString() const { return fmt::Format("%01x", value); } void Reset() { memset(this, 0, sizeof(*this)); } }; struct SpuGroupInfo; class SPUThread : public PPCThread { public: SPU_GPR_hdr GPR[128]; // General-Purpose Registers //FPSCR FPSCR; SPU_SNRConfig_hdr cfg; // Signal Notification Registers Configuration (OR-mode enabled: 0x1 for SNR1, 0x2 for SNR2) u64 R_ADDR; // reservation address u64 R_DATA[16]; // lock line data (BE) EventPort SPUPs[64]; // SPU Thread Event Ports EventManager SPUQs; // SPU Queue Mapping SpuGroupInfo* group; // associated SPU Thread Group (null for raw spu) u64 m_dec_start; // timestamp of writing decrementer value u32 m_dec_value; // written decrementer value u32 m_event_mask; u32 m_events; struct IntrTag { u32 enabled; // 1 == true u32 thread; // established interrupt PPU thread u64 mask; u64 stat; IntrTag() : enabled(0) , thread(0) , mask(0) , stat(0) { } } m_intrtag[3]; template class Channel { public: static const size_t max_count = _max_count; private: union _CRT_ALIGN(8) { struct { volatile u32 m_index; u32 m_value[max_count]; }; volatile u64 m_indval; }; std::mutex m_lock; public: Channel() { Init(); } void Init() { m_indval = 0; } __forceinline bool Pop(u32& res) { if (max_count > 1) { std::lock_guard lock(m_lock); if(!m_index) { return false; } res = m_value[0]; if (max_count > 1) for (u32 i = 1; i < max_count; i++) // FIFO { m_value[i-1] = m_value[i]; } m_value[max_count-1] = 0; m_index--; return true; } else { //lock-free if ((m_indval & 0xffffffff) == 0) return false; else { res = (m_indval >> 32); m_indval = 0; return true; } } } __forceinline bool Push(u32 value) { if (max_count > 1) { std::lock_guard lock(m_lock); if(m_index >= max_count) { return false; } m_value[m_index++] = value; return true; } else { //lock-free if (m_indval & 0xffffffff) return false; else { const u64 new_value = ((u64)value << 32) | 1; m_indval = new_value; return true; } } } __forceinline void PushUncond(u32 value) { if (max_count > 1) { std::lock_guard lock(m_lock); if(m_index >= max_count) m_value[max_count-1] = value; //last message is overwritten else m_value[m_index++] = value; } else { //lock-free const u64 new_value = ((u64)value << 32) | 1; m_indval = new_value; } } __forceinline void PushUncond_OR(u32 value) { if (max_count > 1) { std::lock_guard lock(m_lock); if(m_index >= max_count) m_value[max_count-1] |= value; //last message is logically ORed else m_value[m_index++] = value; } else { InterlockedOr64((volatile s64*)m_indval, ((u64)value << 32) | 1); } } __forceinline void PopUncond(u32& res) { if (max_count > 1) { std::lock_guard lock(m_lock); if(!m_index) res = 0; //result is undefined else { res = m_value[--m_index]; m_value[m_index] = 0; } } else { //lock-free if(!m_index) res = 0; else { res = (m_indval >> 32); m_indval = 0; } } } __forceinline u32 GetCount() { if (max_count > 1) { std::lock_guard lock(m_lock); return m_index; } else { return m_index; } } __forceinline u32 GetFreeCount() { if (max_count > 1) { std::lock_guard lock(m_lock); return max_count - m_index; } else { return max_count - m_index; } } void SetValue(u32 value) { m_value[0] = value; } u32 GetValue() const { return m_value[0]; } }; struct MFCReg { Channel<1> LSA; Channel<1> EAH; Channel<1> EAL; Channel<1> Size_Tag; Channel<1> CMDStatus; Channel<1> QueryType; // only for prxy Channel<1> QueryMask; Channel<1> TagStatus; Channel<1> AtomicStat; } MFC1, MFC2; struct StalledList { u32 lsa; u64 ea; u16 tag; u16 size; u32 cmd; MFCReg* MFCArgs; StalledList() : MFCArgs(nullptr) { } } StallList[32]; Channel<1> StallStat; struct { Channel<1> Out_MBox; Channel<1> Out_IntrMBox; Channel<4> In_MBox; Channel<1> Status; Channel<1> NPC; Channel<1> SNR[2]; } SPU; void WriteSNR(bool number, u32 value); u32 LSA; union { u64 EA; struct { u32 EAH, EAL; }; }; DMAC dmac; void ProcessCmd(u32 cmd, u32 tag, u32 lsa, u64 ea, u32 size); void ListCmd(u32 lsa, u64 ea, u16 tag, u16 size, u32 cmd, MFCReg& MFCArgs); void EnqMfcCmd(MFCReg& MFCArgs); bool CheckEvents(); u32 GetChannelCount(u32 ch); void WriteChannel(u32 ch, const SPU_GPR_hdr& r); void ReadChannel(SPU_GPR_hdr& r, u32 ch); void StopAndSignal(u32 code); u8 ReadLS8 (const u32 lsa) const { return Memory.Read8 (lsa + m_offset); } u16 ReadLS16 (const u32 lsa) const { return Memory.Read16 (lsa + m_offset); } u32 ReadLS32 (const u32 lsa) const { return Memory.Read32 (lsa + m_offset); } u64 ReadLS64 (const u32 lsa) const { return Memory.Read64 (lsa + m_offset); } u128 ReadLS128(const u32 lsa) const { return Memory.Read128(lsa + m_offset); } void WriteLS8 (const u32 lsa, const u8& data) const { Memory.Write8 (lsa + m_offset, data); } void WriteLS16 (const u32 lsa, const u16& data) const { Memory.Write16 (lsa + m_offset, data); } void WriteLS32 (const u32 lsa, const u32& data) const { Memory.Write32 (lsa + m_offset, data); } void WriteLS64 (const u32 lsa, const u64& data) const { Memory.Write64 (lsa + m_offset, data); } void WriteLS128(const u32 lsa, const u128& data) const { Memory.Write128(lsa + m_offset, data); } public: SPUThread(CPUThreadType type = CPU_THREAD_SPU); virtual ~SPUThread(); virtual std::string RegsToString() { std::string ret = "Registers:\n=========\n"; for(uint i=0; i<128; ++i) ret += fmt::Format("GPR[%d] = 0x%s\n", i, GPR[i].ToString().c_str()); return ret; } virtual std::string ReadRegString(const std::string& reg) { std::string::size_type first_brk = reg.find('['); if (first_brk != std::string::npos) { long reg_index; reg_index = atol(reg.substr(first_brk + 1, reg.length()-2).c_str()); if (reg.find("GPR")==0) return fmt::Format("%016llx%016llx", GPR[reg_index]._u64[1], GPR[reg_index]._u64[0]); } return ""; } bool WriteRegString(const std::string& reg, std::string value) { while (value.length() < 32) value = "0"+value; std::string::size_type first_brk = reg.find('['); if (first_brk != std::string::npos) { long reg_index; reg_index = atol(reg.substr(first_brk + 1, reg.length() - 2).c_str()); if (reg.find("GPR")==0) { unsigned long long reg_value0; unsigned long long reg_value1; try { reg_value0 = std::stoull(value.substr(16, 31), 0, 16); reg_value1 = std::stoull(value.substr(0, 15), 0, 16); } catch (std::invalid_argument& /*e*/) { return false; } GPR[reg_index]._u64[0] = (u64)reg_value0; GPR[reg_index]._u64[1] = (u64)reg_value1; return true; } } return false; } public: virtual void InitRegs(); virtual u64 GetFreeStackSize() const; virtual void Task(); protected: virtual void DoReset(); virtual void DoRun(); virtual void DoPause(); virtual void DoResume(); virtual void DoStop(); virtual void DoClose(); }; SPUThread& GetCurrentSPUThread();