#include "stdafx.h" #include "Emu/Memory/Memory.h" #include "Emu/System.h" #include "VKGSRender.h" #include "../rsx_methods.h" #include "../Common/BufferUtils.h" namespace vk { VkPrimitiveTopology get_appropriate_topology(rsx::primitive_type& mode, bool &requires_modification) { requires_modification = false; switch (mode) { case rsx::primitive_type::lines: return VK_PRIMITIVE_TOPOLOGY_LINE_LIST; case rsx::primitive_type::line_loop: requires_modification = true; return VK_PRIMITIVE_TOPOLOGY_LINE_STRIP; case rsx::primitive_type::line_strip: return VK_PRIMITIVE_TOPOLOGY_LINE_STRIP; case rsx::primitive_type::points: return VK_PRIMITIVE_TOPOLOGY_POINT_LIST; case rsx::primitive_type::triangles: return VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST; case rsx::primitive_type::triangle_strip: case rsx::primitive_type::quad_strip: return VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP; case rsx::primitive_type::triangle_fan: return VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN; case rsx::primitive_type::quads: case rsx::primitive_type::polygon: requires_modification = true; return VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST; default: fmt::throw_exception("Unsupported primitive topology 0x%x", (u8)mode); } } bool is_primitive_native(rsx::primitive_type& mode) { bool result; get_appropriate_topology(mode, result); return !result; } VkIndexType get_index_type(rsx::index_array_type type) { switch (type) { case rsx::index_array_type::u32: return VK_INDEX_TYPE_UINT32; case rsx::index_array_type::u16: return VK_INDEX_TYPE_UINT16; } throw; } } namespace { std::tuple> generate_emulating_index_buffer( const rsx::draw_clause& clause, u32 vertex_count, vk::vk_data_heap& m_index_buffer_ring_info) { u32 index_count = get_index_count(clause.primitive, vertex_count); u32 upload_size = index_count * sizeof(u16); VkDeviceSize offset_in_index_buffer = m_index_buffer_ring_info.alloc<256>(upload_size); void* buf = m_index_buffer_ring_info.map(offset_in_index_buffer, upload_size); write_index_array_for_non_indexed_non_native_primitive_to_buffer( reinterpret_cast(buf), clause.primitive, vertex_count); m_index_buffer_ring_info.unmap(); return std::make_tuple( index_count, std::make_tuple(offset_in_index_buffer, VK_INDEX_TYPE_UINT16)); } struct vertex_input_state { VkPrimitiveTopology native_primitive_type; u32 vertex_draw_count; u32 allocated_vertex_count; u32 vertex_data_base; u32 vertex_index_base; std::optional> index_info; }; struct draw_command_visitor { draw_command_visitor(vk::vk_data_heap& index_buffer_ring_info, rsx::vertex_input_layout& layout) : m_index_buffer_ring_info(index_buffer_ring_info) , m_vertex_layout(layout) { } vertex_input_state operator()(const rsx::draw_array_command& command) { bool primitives_emulated = false; VkPrimitiveTopology prims = vk::get_appropriate_topology( rsx::method_registers.current_draw_clause.primitive, primitives_emulated); const u32 vertex_count = rsx::method_registers.current_draw_clause.get_elements_count(); const u32 min_index = rsx::method_registers.current_draw_clause.first_count_commands.front().first; if (primitives_emulated) { u32 index_count; std::optional> index_info; std::tie(index_count, index_info) = generate_emulating_index_buffer(rsx::method_registers.current_draw_clause, vertex_count, m_index_buffer_ring_info); return{ prims, index_count, vertex_count, min_index, 0, index_info }; } return{ prims, vertex_count, vertex_count, min_index, 0, {} }; } vertex_input_state operator()(const rsx::draw_indexed_array_command& command) { bool primitives_emulated = false; VkPrimitiveTopology prims = vk::get_appropriate_topology( rsx::method_registers.current_draw_clause.primitive, primitives_emulated); rsx::index_array_type index_type = rsx::method_registers.current_draw_clause.is_immediate_draw ? rsx::index_array_type::u32 : rsx::method_registers.index_type(); u32 type_size = gsl::narrow(get_index_type_size(index_type)); u32 index_count = rsx::method_registers.current_draw_clause.get_elements_count(); if (primitives_emulated) index_count = get_index_count(rsx::method_registers.current_draw_clause.primitive, index_count); u32 upload_size = index_count * type_size; VkDeviceSize offset_in_index_buffer = m_index_buffer_ring_info.alloc<256>(upload_size); void* buf = m_index_buffer_ring_info.map(offset_in_index_buffer, upload_size); /** * Upload index (and expands it if primitive type is not natively supported). */ u32 min_index, max_index; std::tie(min_index, max_index) = write_index_array_data_to_buffer( gsl::span(static_cast(buf), index_count * type_size), command.raw_index_buffer, index_type, rsx::method_registers.current_draw_clause.primitive, rsx::method_registers.restart_index_enabled(), rsx::method_registers.restart_index(), command.ranges_to_fetch_in_index_buffer, [](auto prim) { return !vk::is_primitive_native(prim); }); m_index_buffer_ring_info.unmap(); std::optional> index_info = std::make_tuple(offset_in_index_buffer, vk::get_index_type(index_type)); //check for vertex arrays with frquency modifiers for (auto &block : m_vertex_layout.interleaved_blocks) { if (block.min_divisor > 1) { //Ignore base offsets and return real results //The upload function will optimize the uploaded range anyway return{ prims, index_count, max_index, 0, 0, index_info }; } } return {prims, index_count, (max_index - min_index + 1), min_index, min_index, index_info}; } vertex_input_state operator()(const rsx::draw_inlined_array& command) { bool primitives_emulated = false; auto &draw_clause = rsx::method_registers.current_draw_clause; VkPrimitiveTopology prims = vk::get_appropriate_topology(draw_clause.primitive, primitives_emulated); const u32 vertex_count = (u32)command.inline_vertex_array.size() * sizeof(u32) / m_vertex_layout.interleaved_blocks[0].attribute_stride; if (!primitives_emulated) { return{ prims, vertex_count, vertex_count, 0, 0, {} }; } u32 index_count; std::optional> index_info; std::tie(index_count, index_info) = generate_emulating_index_buffer(draw_clause, vertex_count, m_index_buffer_ring_info); return{ prims, index_count, vertex_count, 0, 0, index_info }; } private: vk::vk_data_heap& m_index_buffer_ring_info; rsx::vertex_input_layout& m_vertex_layout; }; } std::tuple > > VKGSRender::upload_vertex_data() { m_vertex_layout = analyse_inputs_interleaved(); draw_command_visitor visitor(m_index_buffer_ring_info, m_vertex_layout); auto result = std::apply_visitor(visitor, get_draw_command(rsx::method_registers)); auto &vertex_count = result.allocated_vertex_count; auto &vertex_base = result.vertex_data_base; //Do actual vertex upload auto required = calculate_memory_requirements(m_vertex_layout, vertex_count); size_t persistent_offset = UINT64_MAX, volatile_offset = UINT64_MAX; VkBufferView persistent_view = VK_NULL_HANDLE, volatile_view = VK_NULL_HANDLE; if (required.first > 0) { //Check if cacheable //Only data in the 'persistent' block may be cached //TODO: make vertex cache keep local data beyond frame boundaries and hook notify command bool in_cache = false; bool to_store = false; u32 storage_address = UINT32_MAX; if (m_vertex_layout.interleaved_blocks.size() == 1 && rsx::method_registers.current_draw_clause.command != rsx::draw_command::inlined_array) { storage_address = m_vertex_layout.interleaved_blocks[0].real_offset_address + vertex_base; if (auto cached = m_vertex_cache->find_vertex_range(storage_address, VK_FORMAT_R8_UINT, required.first)) { in_cache = true; m_current_frame->buffer_views_to_clean.push_back(std::make_unique(*m_device, m_attrib_ring_info.heap->value, VK_FORMAT_R8_UINT, cached->offset_in_heap, required.first)); } else { to_store = true; } } if (!in_cache) { persistent_offset = (u32)m_attrib_ring_info.alloc<256>(required.first); m_current_frame->buffer_views_to_clean.push_back(std::make_unique(*m_device, m_attrib_ring_info.heap->value, VK_FORMAT_R8_UINT, persistent_offset, required.first)); if (to_store) { //store ref in vertex cache m_vertex_cache->store_range(storage_address, VK_FORMAT_R8_UINT, required.first, (u32)persistent_offset); } } persistent_view = m_current_frame->buffer_views_to_clean.back()->value; } else { persistent_view = m_null_buffer_view->value; } if (required.second > 0) { volatile_offset = (u32)m_attrib_ring_info.alloc<256>(required.second); m_current_frame->buffer_views_to_clean.push_back(std::make_unique(*m_device, m_attrib_ring_info.heap->value, VK_FORMAT_R8_UINT, volatile_offset, required.second)); volatile_view = m_current_frame->buffer_views_to_clean.back()->value; } else { volatile_view = m_null_buffer_view->value; } m_program->bind_uniform(persistent_view, "persistent_input_stream", m_current_frame->descriptor_set); m_program->bind_uniform(volatile_view, "volatile_input_stream", m_current_frame->descriptor_set); //Write all the data once if possible if (required.first && required.second && volatile_offset > persistent_offset) { //Do this once for both to save time on map/unmap cycles const size_t block_end = (volatile_offset + required.second); const size_t block_size = block_end - persistent_offset; const size_t volatile_offset_in_block = volatile_offset - persistent_offset; void *block_mapping = m_attrib_ring_info.map(persistent_offset, block_size); write_vertex_data_to_memory(m_vertex_layout, vertex_base, vertex_count, block_mapping, (char*)block_mapping + volatile_offset_in_block); m_attrib_ring_info.unmap(); } else { if (required.first > 0 && persistent_offset != UINT64_MAX) { void *persistent_mapping = m_attrib_ring_info.map(persistent_offset, required.first); write_vertex_data_to_memory(m_vertex_layout, vertex_base, vertex_count, persistent_mapping, nullptr); m_attrib_ring_info.unmap(); } if (required.second > 0) { void *volatile_mapping = m_attrib_ring_info.map(volatile_offset, required.second); write_vertex_data_to_memory(m_vertex_layout, vertex_base, vertex_count, nullptr, volatile_mapping); m_attrib_ring_info.unmap(); } } return std::make_tuple(result.native_primitive_type, result.vertex_draw_count, result.allocated_vertex_count, result.vertex_index_base, result.index_info); }