#include "stdafx.h" #include "SPURecompiler.h" #include "Emu/System.h" #include "Emu/system_config.h" #include "Emu/system_progress.hpp" #include "Emu/system_utils.hpp" #include "Emu/cache_utils.hpp" #include "Emu/IdManager.h" #include "Crypto/sha1.h" #include "Utilities/StrUtil.h" #include "Utilities/JIT.h" #include "util/init_mutex.hpp" #include "util/shared_ptr.hpp" #include "SPUThread.h" #include "SPUAnalyser.h" #include "SPUInterpreter.h" #include "SPUDisAsm.h" #include #include #include #include "util/v128.hpp" #include "util/simd.hpp" #include "util/sysinfo.hpp" const extern spu_decoder g_spu_itype; const extern spu_decoder g_spu_iname; const extern spu_decoder g_spu_iflag; // Move 4 args for calling native function from a GHC calling convention function #if defined(ARCH_X64) static u8* move_args_ghc_to_native(u8* raw) { #ifdef _WIN32 // mov rcx, r13 // mov rdx, rbp // mov r8, r12 // mov r9, rbx std::memcpy(raw, "\x4C\x89\xE9\x48\x89\xEA\x4D\x89\xE0\x49\x89\xD9", 12); #else // mov rdi, r13 // mov rsi, rbp // mov rdx, r12 // mov rcx, rbx std::memcpy(raw, "\x4C\x89\xEF\x48\x89\xEE\x4C\x89\xE2\x48\x89\xD9", 12); #endif return raw + 12; } #elif defined(ARCH_ARM64) static void ghc_cpp_trampoline(u64 fn_target, native_asm& c, auto& args) { using namespace asmjit; Label target = c.newLabel(); c.mov(args[0], a64::x19); c.mov(args[1], a64::x20); c.mov(args[2], a64::x21); c.mov(args[3], a64::x22); c.ldr(a64::x15, arm::Mem(target)); c.br(a64::x15); c.brk(Imm(0x42)); // Unreachable c.bind(target); c.embedUInt64(fn_target); } #endif DECLARE(spu_runtime::tr_dispatch) = [] { #ifdef __APPLE__ pthread_jit_write_protect_np(false); #endif #if defined(ARCH_X64) // Generate a special trampoline to spu_recompiler_base::dispatch with pause instruction u8* const trptr = jit_runtime::alloc(32, 16); u8* raw = move_args_ghc_to_native(trptr); *raw++ = 0xf3; // pause *raw++ = 0x90; *raw++ = 0xff; // jmp [rip] *raw++ = 0x25; std::memset(raw, 0, 4); const u64 target = reinterpret_cast(&spu_recompiler_base::dispatch); std::memcpy(raw + 4, &target, 8); return reinterpret_cast(trptr); #elif defined(ARCH_ARM64) auto trptr = build_function_asm("tr_dispatch", [](native_asm& c, auto& args) { c.yield(); ghc_cpp_trampoline(reinterpret_cast(&spu_recompiler_base::dispatch), c, args); c.embed("tr_dispatch", 11); }); return trptr; #else #error "Unimplemented" #endif }(); DECLARE(spu_runtime::tr_branch) = [] { #if defined(ARCH_X64) // Generate a trampoline to spu_recompiler_base::branch u8* const trptr = jit_runtime::alloc(32, 16); u8* raw = move_args_ghc_to_native(trptr); *raw++ = 0xff; // jmp [rip] *raw++ = 0x25; std::memset(raw, 0, 4); const u64 target = reinterpret_cast(&spu_recompiler_base::branch); std::memcpy(raw + 4, &target, 8); return reinterpret_cast(trptr); #elif defined(ARCH_ARM64) auto trptr = build_function_asm("tr_branch", [](native_asm& c, auto& args) { ghc_cpp_trampoline(reinterpret_cast(&spu_recompiler_base::branch), c, args); c.embed("tr_branch", 9); }); return trptr; #else #error "Unimplemented" #endif }(); DECLARE(spu_runtime::tr_interpreter) = [] { #if defined(ARCH_X64) u8* const trptr = jit_runtime::alloc(32, 16); u8* raw = move_args_ghc_to_native(trptr); *raw++ = 0xff; // jmp [rip] *raw++ = 0x25; std::memset(raw, 0, 4); const u64 target = reinterpret_cast(&spu_recompiler_base::old_interpreter); std::memcpy(raw + 4, &target, 8); return reinterpret_cast(trptr); #elif defined(ARCH_ARM64) auto trptr = build_function_asm("tr_interpreter", [](native_asm& c, auto& args) { ghc_cpp_trampoline(reinterpret_cast(&spu_recompiler_base::old_interpreter), c, args); c.embed("tr_interpreter", 14); }); return trptr; #endif }(); DECLARE(spu_runtime::g_dispatcher) = [] { // Allocate 2^20 positions in data area const auto ptr = reinterpret_cast>(jit_runtime::alloc(sizeof(*g_dispatcher), 64, false)); for (auto& x : *ptr) { x.raw() = tr_dispatch; } return ptr; }(); DECLARE(spu_runtime::tr_all) = [] { #if defined(ARCH_X64) u8* const trptr = jit_runtime::alloc(32, 16); u8* raw = trptr; // Load PC: mov eax, [r13 + spu_thread::pc] *raw++ = 0x41; *raw++ = 0x8b; *raw++ = 0x45; *raw++ = ::narrow(::offset32(&spu_thread::pc)); // Get LS address starting from PC: lea rcx, [rbp + rax] *raw++ = 0x48; *raw++ = 0x8d; *raw++ = 0x4c; *raw++ = 0x05; *raw++ = 0x00; // mov eax, [rcx] *raw++ = 0x8b; *raw++ = 0x01; // shr eax, (32 - 20) *raw++ = 0xc1; *raw++ = 0xe8; *raw++ = 0x0c; // Load g_dispatcher to rdx *raw++ = 0x48; *raw++ = 0x8d; *raw++ = 0x15; const s32 r32 = ::narrow(reinterpret_cast(g_dispatcher) - reinterpret_cast(raw) - 4); std::memcpy(raw, &r32, 4); raw += 4; // Update block_hash (set zero): mov [r13 + spu_thread::m_block_hash], 0 *raw++ = 0x49; *raw++ = 0xc7; *raw++ = 0x45; *raw++ = ::narrow(::offset32(&spu_thread::block_hash)); *raw++ = 0x00; *raw++ = 0x00; *raw++ = 0x00; *raw++ = 0x00; // jmp [rdx + rax * 8] *raw++ = 0xff; *raw++ = 0x24; *raw++ = 0xc2; return reinterpret_cast(trptr); #elif defined(ARCH_ARM64) auto trptr = build_function_asm("tr_all", [](native_asm& c, auto& args) { using namespace asmjit; // w1: PC (eax in x86 SPU) // x7: lsa (rcx in x86 SPU) // Load PC Label pc_offset = c.newLabel(); c.ldr(a64::x0, arm::Mem(pc_offset)); c.ldr(a64::w1, arm::Mem(a64::x19, a64::x0)); // REG_Base + offset(spu_thread::pc) // Compute LS address = REG_Sp + PC, store into x7 (use later) c.add(a64::x7, a64::x20, a64::x1); // Load 32b from LS address c.ldr(a64::w3, arm::Mem(a64::x7)); // shr (32 - 20) c.lsr(a64::w3, a64::w3, Imm(32 - 20)); // Load g_dispatcher Label g_dispatcher_offset = c.newLabel(); c.ldr(a64::x4, arm::Mem(g_dispatcher_offset)); // Update block hash Label block_hash_offset = c.newLabel(); c.mov(a64::x5, Imm(0)); c.ldr(a64::x6, arm::Mem(block_hash_offset)); c.str(a64::x5, arm::Mem(a64::x19, a64::x6)); // REG_Base + offset(spu_thread::block_hash) // Jump to [g_dispatcher + idx * 8] c.mov(a64::x6, Imm(8)); c.mul(a64::x6, a64::x3, a64::x6); c.add(a64::x4, a64::x4, a64::x6); c.ldr(a64::x4, arm::Mem(a64::x4)); c.br(a64::x4); c.bind(pc_offset); c.embedUInt64(::offset32(&spu_thread::pc)); c.bind(g_dispatcher_offset); c.embedUInt64(reinterpret_cast(g_dispatcher)); c.bind(block_hash_offset); c.embedUInt64(::offset32(&spu_thread::block_hash)); c.embed("tr_all", 6); }); return trptr; #else #error "Unimplemented" #endif }(); DECLARE(spu_runtime::g_gateway) = build_function_asm("spu_gateway", [](native_asm& c, auto& args) { // Gateway for SPU dispatcher, converts from native to GHC calling convention, also saves RSP value for spu_escape using namespace asmjit; #if defined(ARCH_X64) #ifdef _WIN32 c.push(x86::r15); c.push(x86::r14); c.push(x86::r13); c.push(x86::r12); c.push(x86::rsi); c.push(x86::rdi); c.push(x86::rbp); c.push(x86::rbx); c.sub(x86::rsp, 0xa8); c.movaps(x86::oword_ptr(x86::rsp, 0x90), x86::xmm15); c.movaps(x86::oword_ptr(x86::rsp, 0x80), x86::xmm14); c.movaps(x86::oword_ptr(x86::rsp, 0x70), x86::xmm13); c.movaps(x86::oword_ptr(x86::rsp, 0x60), x86::xmm12); c.movaps(x86::oword_ptr(x86::rsp, 0x50), x86::xmm11); c.movaps(x86::oword_ptr(x86::rsp, 0x40), x86::xmm10); c.movaps(x86::oword_ptr(x86::rsp, 0x30), x86::xmm9); c.movaps(x86::oword_ptr(x86::rsp, 0x20), x86::xmm8); c.movaps(x86::oword_ptr(x86::rsp, 0x10), x86::xmm7); c.movaps(x86::oword_ptr(x86::rsp, 0), x86::xmm6); #else c.push(x86::rbp); c.push(x86::r15); c.push(x86::r14); c.push(x86::r13); c.push(x86::r12); c.push(x86::rbx); c.push(x86::rax); #endif // Save native stack pointer for longjmp emulation c.mov(x86::qword_ptr(args[0], ::offset32(&spu_thread::saved_native_sp)), x86::rsp); // Move 4 args (despite spu_function_t def) c.mov(x86::r13, args[0]); c.mov(x86::rbp, args[1]); c.mov(x86::r12, args[2]); c.mov(x86::rbx, args[3]); if (utils::has_avx()) { c.vzeroupper(); } c.call(spu_runtime::tr_all); if (utils::has_avx()) { c.vzeroupper(); } #ifdef _WIN32 c.movaps(x86::xmm6, x86::oword_ptr(x86::rsp, 0)); c.movaps(x86::xmm7, x86::oword_ptr(x86::rsp, 0x10)); c.movaps(x86::xmm8, x86::oword_ptr(x86::rsp, 0x20)); c.movaps(x86::xmm9, x86::oword_ptr(x86::rsp, 0x30)); c.movaps(x86::xmm10, x86::oword_ptr(x86::rsp, 0x40)); c.movaps(x86::xmm11, x86::oword_ptr(x86::rsp, 0x50)); c.movaps(x86::xmm12, x86::oword_ptr(x86::rsp, 0x60)); c.movaps(x86::xmm13, x86::oword_ptr(x86::rsp, 0x70)); c.movaps(x86::xmm14, x86::oword_ptr(x86::rsp, 0x80)); c.movaps(x86::xmm15, x86::oword_ptr(x86::rsp, 0x90)); c.add(x86::rsp, 0xa8); c.pop(x86::rbx); c.pop(x86::rbp); c.pop(x86::rdi); c.pop(x86::rsi); c.pop(x86::r12); c.pop(x86::r13); c.pop(x86::r14); c.pop(x86::r15); #else c.add(x86::rsp, +8); c.pop(x86::rbx); c.pop(x86::r12); c.pop(x86::r13); c.pop(x86::r14); c.pop(x86::r15); c.pop(x86::rbp); #endif c.ret(); #elif defined(ARCH_ARM64) // Push callee saved registers to the stack // We need to save x18-x30 = 13 x 8B each + 8 bytes for 16B alignment = 112B c.sub(a64::sp, a64::sp, Imm(112)); c.stp(a64::x18, a64::x19, arm::Mem(a64::sp)); c.stp(a64::x20, a64::x21, arm::Mem(a64::sp, 16)); c.stp(a64::x22, a64::x23, arm::Mem(a64::sp, 32)); c.stp(a64::x24, a64::x25, arm::Mem(a64::sp, 48)); c.stp(a64::x26, a64::x27, arm::Mem(a64::sp, 64)); c.stp(a64::x28, a64::x29, arm::Mem(a64::sp, 80)); c.str(a64::x30, arm::Mem(a64::sp, 96)); // Save native stack pointer for longjmp emulation Label sp_offset = c.newLabel(); c.ldr(a64::x26, arm::Mem(sp_offset)); // sp not allowed to be used in load/stores directly c.mov(a64::x15, a64::sp); c.str(a64::x15, arm::Mem(args[0], a64::x26)); // Move 4 args (despite spu_function_t def) c.mov(a64::x19, args[0]); c.mov(a64::x20, args[1]); c.mov(a64::x21, args[2]); c.mov(a64::x22, args[3]); // Save ret address to stack // since non-tail calls to cpp fns may corrupt lr and // g_tail_escape may jump out of a fn before the epilogue can restore lr Label ret_addr = c.newLabel(); c.adr(a64::x0, ret_addr); c.str(a64::x0, arm::Mem(a64::sp, 104)); Label call_target = c.newLabel(); c.ldr(a64::x0, arm::Mem(call_target)); c.blr(a64::x0); c.bind(ret_addr); // Restore stack ptr c.ldr(a64::x26, arm::Mem(sp_offset)); c.ldr(a64::x15, arm::Mem(a64::x19, a64::x26)); c.mov(a64::sp, a64::x15); // Restore registers from the stack c.ldp(a64::x18, a64::x19, arm::Mem(a64::sp)); c.ldp(a64::x20, a64::x21, arm::Mem(a64::sp, 16)); c.ldp(a64::x22, a64::x23, arm::Mem(a64::sp, 32)); c.ldp(a64::x24, a64::x25, arm::Mem(a64::sp, 48)); c.ldp(a64::x26, a64::x27, arm::Mem(a64::sp, 64)); c.ldp(a64::x28, a64::x29, arm::Mem(a64::sp, 80)); c.ldr(a64::x30, arm::Mem(a64::sp, 96)); // Restore stack ptr c.add(a64::sp, a64::sp, Imm(112)); // Return c.ret(a64::x30); c.bind(sp_offset); c.embedUInt64(::offset32(&spu_thread::saved_native_sp)); c.bind(call_target); c.embedUInt64(reinterpret_cast(spu_runtime::tr_all)); c.embed("spu_gateway", 11); #else #error "Unimplemented" #endif }); DECLARE(spu_runtime::g_escape) = build_function_asm("spu_escape", [](native_asm& c, auto& args) { using namespace asmjit; #if defined(ARCH_X64) // Restore native stack pointer (longjmp emulation) c.mov(x86::rsp, x86::qword_ptr(args[0], ::offset32(&spu_thread::saved_native_sp))); // Return to the return location c.sub(x86::rsp, 8); c.ret(); #elif defined(ARCH_ARM64) // Restore native stack pointer (longjmp emulation) Label sp_offset = c.newLabel(); c.ldr(a64::x15, arm::Mem(sp_offset)); c.ldr(a64::x15, arm::Mem(args[0], a64::x15)); c.mov(a64::sp, a64::x15); c.ldr(a64::x30, arm::Mem(a64::sp, 104)); c.ret(a64::x30); c.bind(sp_offset); c.embedUInt64(::offset32(&spu_thread::saved_native_sp)); c.embed("spu_escape", 10); #else #error "Unimplemented" #endif }); DECLARE(spu_runtime::g_tail_escape) = build_function_asm("spu_tail_escape", [](native_asm& c, auto& args) { using namespace asmjit; #if defined(ARCH_X64) // Restore native stack pointer (longjmp emulation) c.mov(x86::rsp, x86::qword_ptr(args[0], ::offset32(&spu_thread::saved_native_sp))); // Adjust stack for initial call instruction in the gateway c.sub(x86::rsp, 16); // Tail call, GHC CC (second arg) c.mov(x86::r13, args[0]); c.mov(x86::rbp, x86::qword_ptr(args[0], ::offset32(&spu_thread::ls))); c.mov(x86::r12, args[2]); c.xor_(x86::ebx, x86::ebx); c.mov(x86::qword_ptr(x86::rsp), args[1]); c.ret(); #elif defined(ARCH_ARM64) // Restore native stack pointer (longjmp emulation) Label sp_offset = c.newLabel(); c.ldr(a64::x15, arm::Mem(sp_offset)); c.ldr(a64::x15, arm::Mem(args[0], a64::x15)); c.mov(a64::sp, a64::x15); // Reload lr, since it might've been clobbered by a cpp fn // and g_tail_escape runs before epilogue c.ldr(a64::x30, arm::Mem(a64::sp, 104)); // Tail call, GHC CC c.mov(a64::x19, args[0]); // REG_Base Label ls_offset = c.newLabel(); c.ldr(a64::x20, arm::Mem(ls_offset)); c.ldr(a64::x20, arm::Mem(args[0], a64::x20)); // REG_Sp c.mov(a64::x21, args[2]); // REG_Hp c.eor(a64::w22, a64::w22, a64::w22); // REG_R1 c.br(args[1]); c.bind(ls_offset); c.embedUInt64(::offset32(&spu_thread::ls)); c.bind(sp_offset); c.embedUInt64(::offset32(&spu_thread::saved_native_sp)); c.embed("spu_tail_escape", 15); #else #error "Unimplemented" #endif }); DECLARE(spu_runtime::g_interpreter_table) = {}; DECLARE(spu_runtime::g_interpreter) = nullptr; spu_cache::spu_cache(const std::string& loc) : m_file(loc, fs::read + fs::write + fs::create + fs::append) { } spu_cache::~spu_cache() { } extern void utilize_spu_data_segment(u32 vaddr, const void* ls_data_vaddr, u32 size) { if (vaddr % 4) { return; } size &= -4; if (!size || vaddr + size > SPU_LS_SIZE) { return; } if (!g_cfg.core.llvm_precompilation) { return; } g_fxo->need(); if (!g_fxo->get().collect_funcs_to_precompile) { return; } std::basic_string data(size / 4, 0); std::memcpy(data.data(), ls_data_vaddr, size); spu_cache::precompile_data_t obj{vaddr, std::move(data)}; obj.funcs = spu_thread::discover_functions(vaddr, { reinterpret_cast(ls_data_vaddr), size }, vaddr != 0, umax); if (obj.funcs.empty()) { // Nothing to add return; } for (u32 addr : obj.funcs) { spu_log.notice("Found SPU function at: 0x%05x", addr); } spu_log.notice("Found %u SPU functions", obj.funcs.size()); g_fxo->get().precompile_funcs.push(std::move(obj)); } // For SPU cache validity check static u16 calculate_crc16(const uchar* data, usz length) { u16 crc = umax; while (length--) { u8 x = (crc >> 8) ^ *data++; x ^= (x >> 4); crc = static_cast((crc << 8) ^ (x << 12) ^ (x << 5) ^ x); } return crc; } std::deque spu_cache::get() { std::deque result; if (!m_file) { return result; } m_file.seek(0); // TODO: signal truncated or otherwise broken file while (true) { struct block_info_t { be_t crc; be_t size; be_t addr; } block_info{}; if (!m_file.read(block_info)) { break; } const u32 crc = block_info.crc; const u32 size = block_info.size; const u32 addr = block_info.addr; if (utils::add_saturate(addr, size * 4) > SPU_LS_SIZE) { break; } std::vector func; if (!m_file.read(func, size)) { break; } if (!size || !func[0]) { // Skip old format Giga entries continue; } // CRC check is optional to be compatible with old format if (crc && std::max(calculate_crc16(reinterpret_cast(func.data()), size * 4), 1) != crc) { // Invalid, but continue anyway continue; } spu_program res; res.entry_point = addr; res.lower_bound = addr; res.data = std::move(func); result.emplace_front(std::move(res)); } return result; } void spu_cache::add(const spu_program& func) { if (!m_file) { return; } be_t size = ::size32(func.data); be_t addr = func.entry_point; // Add CRC (forced non-zero) size |= std::max(calculate_crc16(reinterpret_cast(func.data.data()), size * 4), 1) << 16; const fs::iovec_clone gather[3] { {&size, sizeof(size)}, {&addr, sizeof(addr)}, {func.data.data(), func.data.size() * 4} }; // Append data m_file.write_gather(gather, 3); } void spu_cache::initialize(bool build_existing_cache) { spu_runtime::g_interpreter = spu_runtime::g_gateway; if (g_cfg.core.spu_decoder == spu_decoder_type::_static || g_cfg.core.spu_decoder == spu_decoder_type::dynamic) { for (auto& x : *spu_runtime::g_dispatcher) { x.raw() = spu_runtime::tr_interpreter; } } const std::string ppu_cache = rpcs3::cache::get_ppu_cache(); if (ppu_cache.empty()) { return; } // SPU cache file (version + block size type) const std::string loc = ppu_cache + "spu-" + fmt::to_lower(g_cfg.core.spu_block_size.to_string()) + "-v1-tane.dat"; spu_cache cache(loc); if (!cache) { spu_log.error("Failed to initialize SPU cache at: %s", loc); return; } // Read cache auto func_list = cache.get(); atomic_t fnext{}; atomic_t fail_flag{0}; auto data_list = g_fxo->get().precompile_funcs.pop_all(); g_fxo->get().collect_funcs_to_precompile = false; usz total_precompile = 0; for (auto& sec : data_list) { total_precompile += sec.funcs.size(); } const bool spu_precompilation_enabled = func_list.empty() && g_cfg.core.spu_cache && g_cfg.core.llvm_precompilation; if (spu_precompilation_enabled) { // What compiles in this case goes straight to disk g_fxo->get() = std::move(cache); } else if (!build_existing_cache) { return; } else { total_precompile = 0; data_list = {}; } atomic_t data_indexer = 0; if (g_cfg.core.spu_decoder == spu_decoder_type::dynamic || g_cfg.core.spu_decoder == spu_decoder_type::llvm) { if (auto compiler = spu_recompiler_base::make_llvm_recompiler(11)) { compiler->init(); if (compiler->compile({}) && spu_runtime::g_interpreter) { spu_log.success("SPU Runtime: Built the interpreter."); if (g_cfg.core.spu_decoder != spu_decoder_type::llvm) { return; } } else { spu_log.fatal("SPU Runtime: Failed to build the interpreter."); } } } u32 worker_count = 0; std::optional progr; u32 total_funcs = 0; if (g_cfg.core.spu_decoder == spu_decoder_type::asmjit || g_cfg.core.spu_decoder == spu_decoder_type::llvm) { const usz add_count = func_list.size() + total_precompile; if (add_count) { total_funcs = build_existing_cache ? ::narrow(add_count) : 0; } worker_count = std::min(rpcs3::utils::get_max_threads(), ::narrow(add_count)); } atomic_t pending_progress = 0; atomic_t showing_progress = false; if (!g_progr_ptotal) { g_progr_ptotal += total_funcs; showing_progress.release(true); progr.emplace("Building SPU cache..."); } named_thread_group workers("SPU Worker ", worker_count, [&]() -> uint { #ifdef __APPLE__ pthread_jit_write_protect_np(false); #endif // Set low priority thread_ctrl::scoped_priority low_prio(-1); // Initialize compiler instances for parallel compilation std::unique_ptr compiler; if (g_cfg.core.spu_decoder == spu_decoder_type::asmjit) { compiler = spu_recompiler_base::make_asmjit_recompiler(); } else if (g_cfg.core.spu_decoder == spu_decoder_type::llvm) { compiler = spu_recompiler_base::make_llvm_recompiler(); } compiler->init(); // Counter for error reporting u32 logged_error = 0; // How much every thread compiled uint result = 0; // Fake LS std::vector> ls(0x10000); usz func_i = fnext++; // Ensure some actions are performed on a single thread const bool is_first_thread = func_i == 0; // Build functions for (; func_i < func_list.size(); func_i = fnext++, (showing_progress ? g_progr_pdone : pending_progress) += build_existing_cache ? 1 : 0) { const spu_program& func = std::as_const(func_list)[func_i]; if (Emu.IsStopped() || fail_flag) { continue; } // Get data start const u32 start = func.lower_bound; const u32 size0 = ::size32(func.data); be_t hash_start; { sha1_context ctx; u8 output[20]; sha1_starts(&ctx); sha1_update(&ctx, reinterpret_cast(func.data.data()), func.data.size() * 4); sha1_finish(&ctx, output); std::memcpy(&hash_start, output, sizeof(hash_start)); } // Check hash against allowed bounds const bool inverse_bounds = g_cfg.core.spu_llvm_lower_bound > g_cfg.core.spu_llvm_upper_bound; if ((!inverse_bounds && (hash_start < g_cfg.core.spu_llvm_lower_bound || hash_start > g_cfg.core.spu_llvm_upper_bound)) || (inverse_bounds && (hash_start < g_cfg.core.spu_llvm_lower_bound && hash_start > g_cfg.core.spu_llvm_upper_bound))) { spu_log.error("[Debug] Skipped function %s", fmt::base57(hash_start)); result++; continue; } // Initialize LS with function data only for (u32 i = 0, pos = start; i < size0; i++, pos += 4) { ls[pos / 4] = std::bit_cast>(func.data[i]); } // Call analyser spu_program func2 = compiler->analyse(ls.data(), func.entry_point); if (func2 != func) { spu_log.error("[0x%05x] SPU Analyser failed, %u vs %u", func2.entry_point, func2.data.size(), size0); if (logged_error < 2) { std::string log; compiler->dump(func, log); spu_log.notice("[0x%05x] Function: %s", func.entry_point, log); logged_error++; } } else if (!compiler->compile(std::move(func2))) { // Likely, out of JIT memory. Signal to prevent further building. fail_flag |= 1; continue; } // Clear fake LS std::memset(ls.data() + start / 4, 0, 4 * (size0 - 1)); result++; if (is_first_thread && !showing_progress) { if (!g_progr.load() && !g_progr_ptotal && !g_progr_ftotal) { showing_progress = true; g_progr_pdone += pending_progress.exchange(0); g_progr_ptotal += total_funcs; progr.emplace("Building SPU cache..."); } } else if (showing_progress && pending_progress) { // Cover missing progress due to a race g_progr_pdone += pending_progress.exchange(0); } } u32 last_sec_idx = umax; for (func_i = data_indexer++;; func_i = data_indexer++, (showing_progress ? g_progr_pdone : pending_progress) += build_existing_cache ? 1 : 0) { usz passed_count = 0; u32 func_addr = 0; u32 next_func = 0; u32 sec_addr = umax; u32 sec_idx = 0; std::basic_string_view inst_data; // Try to get the data this index points to for (auto& sec : data_list) { if (func_i < passed_count + sec.funcs.size()) { const usz func_idx = func_i - passed_count; sec_addr = sec.vaddr; func_addr = ::at32(sec.funcs, func_idx); inst_data = sec.inst_data; next_func = sec.funcs.size() >= func_idx ? ::narrow(sec_addr + inst_data.size() * 4) : sec.funcs[func_idx]; break; } passed_count += sec.funcs.size(); sec_idx++; } if (sec_addr == umax) { // End of compilation for thread break; } if (Emu.IsStopped() || fail_flag) { continue; } if (last_sec_idx != sec_idx) { if (last_sec_idx != umax) { // Clear fake LS of previous section auto& sec = data_list[last_sec_idx]; std::memset(ls.data() + sec.vaddr / 4, 0, sec.inst_data.size() * 4); } // Initialize LS with the entire section data for (u32 i = 0, pos = sec_addr; i < inst_data.size(); i++, pos += 4) { ls[pos / 4] = std::bit_cast>(inst_data[i]); } last_sec_idx = sec_idx; } u32 block_addr = func_addr; std::map> targets; // Call analyser spu_program func2 = compiler->analyse(ls.data(), block_addr, &targets); while (!func2.data.empty()) { const u32 last_inst = std::bit_cast>(func2.data.back()); const u32 prog_size = ::size32(func2.data); if (!compiler->compile(std::move(func2))) { // Likely, out of JIT memory. Signal to prevent further building. fail_flag |= 1; break; } result++; const u32 start_new = block_addr + prog_size * 4; if (start_new >= next_func || (start_new == next_func - 4 && ls[start_new / 4] == 0x200000u)) { // Completed break; } if (auto type = g_spu_itype.decode(last_inst); type == spu_itype::BRSL || type == spu_itype::BRASL || type == spu_itype::BISL || type == spu_itype::SYNC) { if (ls[start_new / 4] && g_spu_itype.decode(ls[start_new / 4]) != spu_itype::UNK) { spu_log.notice("Precompiling fallthrough to 0x%05x", start_new); func2 = compiler->analyse(ls.data(), start_new, &targets); block_addr = start_new; continue; } } if (targets.empty()) { break; } const auto upper = targets.upper_bound(func_addr); if (upper == targets.begin()) { break; } u32 new_entry = umax; // Find the lowest target in the space in-between for (auto it = std::prev(upper); it != targets.end() && it->first < start_new && new_entry > start_new; it++) { for (u32 target : it->second) { if (target >= start_new && target < next_func) { if (target < new_entry) { new_entry = target; if (new_entry == start_new) { // Cannot go lower break; } } } } } if (new_entry != umax && !spu_thread::is_exec_code(new_entry, { reinterpret_cast(ls.data()), SPU_LS_SIZE }, 0, true)) { new_entry = umax; } if (new_entry == umax) { new_entry = start_new; while (new_entry < next_func && (ls[start_new / 4] < 0x3fffc || !spu_thread::is_exec_code(new_entry, { reinterpret_cast(ls.data()), SPU_LS_SIZE }, 0, true))) { new_entry += 4; } if (new_entry >= next_func || (new_entry == next_func - 4 && ls[new_entry / 4] == 0x200000u)) { // Completed break; } } spu_log.notice("Precompiling filler space at 0x%05x (next=0x%05x)", new_entry, next_func); func2 = compiler->analyse(ls.data(), new_entry, &targets); block_addr = new_entry; } if (is_first_thread && !showing_progress) { if (!g_progr.load() && !g_progr_ptotal && !g_progr_ftotal) { showing_progress = true; g_progr_pdone += pending_progress.exchange(0); g_progr_ptotal += total_funcs; progr.emplace("Building SPU cache..."); } } else if (showing_progress && pending_progress) { // Cover missing progress due to a race g_progr_pdone += pending_progress.exchange(0); } } if (showing_progress && pending_progress) { // Cover missing progress due to a race g_progr_pdone += pending_progress.exchange(0); } return result; }); u32 built_total = 0; // Join (implicitly) and print individual results for (u32 i = 0; i < workers.size(); i++) { spu_log.notice("SPU Runtime: Worker %u built %u programs.", i + 1, workers[i]); built_total += workers[i]; } spu_log.notice("SPU Runtime: Workers built %u programs.", built_total); if (Emu.IsStopped()) { spu_log.error("SPU Runtime: Cache building aborted."); return; } if (fail_flag) { spu_log.fatal("SPU Runtime: Cache building failed (out of memory)."); return; } if ((g_cfg.core.spu_decoder == spu_decoder_type::asmjit || g_cfg.core.spu_decoder == spu_decoder_type::llvm) && !func_list.empty()) { spu_log.success("SPU Runtime: Built %u functions.", func_list.size()); if (g_cfg.core.spu_debug) { std::string dump; dump.reserve(10'000'000); std::map, spu_program*> sorted; for (auto&& f : func_list) { // Interpret as a byte string std::basic_string_view data = {reinterpret_cast(f.data.data()), f.data.size() * sizeof(u32)}; sorted[data] = &f; } std::unordered_set depth_n; u32 n_max = 0; for (auto&& [bytes, f] : sorted) { { sha1_context ctx; u8 output[20]; sha1_starts(&ctx); sha1_update(&ctx, bytes.data(), bytes.size()); sha1_finish(&ctx, output); fmt::append(dump, "\n\t[%s] ", fmt::base57(output)); } u32 depth_m = 0; for (auto&& [data, f2] : sorted) { u32 depth = 0; if (f2 == f) { continue; } for (u32 i = 0; i < bytes.size(); i++) { if (i < data.size() && data[i] == bytes[i]) { depth++; } else { break; } } depth_n.emplace(depth); depth_m = std::max(depth, depth_m); } fmt::append(dump, "c=%06d,d=%06d ", depth_n.size(), depth_m); bool sk = false; for (u32 i = 0; i < bytes.size(); i++) { if (depth_m == i) { dump += '|'; sk = true; } fmt::append(dump, "%02x", bytes[i]); if (i % 4 == 3) { if (sk) { sk = false; } else { dump += ' '; } dump += ' '; } } fmt::append(dump, "\n\t%49s", ""); for (u32 i = 0; i < f->data.size(); i++) { fmt::append(dump, "%-10s", g_spu_iname.decode(std::bit_cast>(f->data[i]))); } n_max = std::max(n_max, ::size32(depth_n)); depth_n.clear(); } spu_log.notice("SPU Cache Dump (max_c=%d): %s", n_max, dump); } } // Initialize global cache instance if (g_cfg.core.spu_cache && cache) { g_fxo->get() = std::move(cache); } } bool spu_program::operator==(const spu_program& rhs) const noexcept { // TODO return entry_point - lower_bound == rhs.entry_point - rhs.lower_bound && data == rhs.data; } bool spu_program::operator<(const spu_program& rhs) const noexcept { const u32 lhs_offs = (entry_point - lower_bound) / 4; const u32 rhs_offs = (rhs.entry_point - rhs.lower_bound) / 4; // Select range for comparison std::basic_string_view lhs_data(data.data() + lhs_offs, data.size() - lhs_offs); std::basic_string_view rhs_data(rhs.data.data() + rhs_offs, rhs.data.size() - rhs_offs); const auto cmp0 = lhs_data.compare(rhs_data); if (cmp0 < 0) return true; else if (cmp0 > 0) return false; // Compare from address 0 to the point before the entry point (TODO: undesirable) lhs_data = {data.data(), lhs_offs}; rhs_data = {rhs.data.data(), rhs_offs}; const auto cmp1 = lhs_data.compare(rhs_data); if (cmp1 < 0) return true; else if (cmp1 > 0) return false; // TODO return lhs_offs < rhs_offs; } spu_runtime::spu_runtime() { // Clear LLVM output m_cache_path = rpcs3::cache::get_ppu_cache(); if (m_cache_path.empty()) { return; } fs::create_dir(m_cache_path + "llvm/"); fs::remove_all(m_cache_path + "llvm/", false); if (g_cfg.core.spu_debug) { fs::file(m_cache_path + "spu.log", fs::rewrite); fs::file(m_cache_path + "spu-ir.log", fs::rewrite); } } spu_item* spu_runtime::add_empty(spu_program&& data) { if (data.data.empty()) { return nullptr; } // Store previous item if already added spu_item* prev = nullptr; //Try to add item that doesn't exist yet const auto ret = m_stuff[data.data[0] >> 12].push_if([&](spu_item& _new, spu_item& _old) { if (_new.data == _old.data) { prev = &_old; return false; } return true; }, std::move(data)); if (ret) { return ret; } return prev; } spu_function_t spu_runtime::rebuild_ubertrampoline(u32 id_inst) { // Prepare sorted list static thread_local std::vector, spu_function_t>> m_flat_list; // Remember top position auto stuff_it = ::at32(m_stuff, id_inst >> 12).begin(); auto stuff_end = ::at32(m_stuff, id_inst >> 12).end(); { if (stuff_it->trampoline) { return stuff_it->trampoline; } m_flat_list.clear(); for (auto it = stuff_it; it != stuff_end; ++it) { if (const auto ptr = it->compiled.load()) { std::basic_string_view range{it->data.data.data(), it->data.data.size()}; range.remove_prefix((it->data.entry_point - it->data.lower_bound) / 4); m_flat_list.emplace_back(range, ptr); } else { // Pull oneself deeper (TODO) ++stuff_it; } } } std::sort(m_flat_list.begin(), m_flat_list.end(), FN(x.first < y.first)); struct work { u32 size; u16 from; u16 level; u8* rel32; decltype(m_flat_list)::iterator beg; decltype(m_flat_list)::iterator end; }; // Scratch vector static thread_local std::vector workload; // Generate a dispatcher (übertrampoline) const auto beg = m_flat_list.begin(); const auto _end = m_flat_list.end(); const u32 size0 = ::size32(m_flat_list); auto result = beg->second; if (size0 != 1) { #if defined(ARCH_ARM64) // Allocate some writable executable memory u8* const wxptr = jit_runtime::alloc(size0 * 128 + 16, 16); if (!wxptr) { return nullptr; } // Raw assembly pointer u8* raw = wxptr; auto make_jump = [&](asmjit::arm::CondCode op, auto target) { // 36 bytes // Fallback to dispatch if no target const u64 taddr = target ? reinterpret_cast(target) : reinterpret_cast(tr_dispatch); // ldr x9, #16 -> ldr x9, taddr *raw++ = 0x89; *raw++ = 0x00; *raw++ = 0x00; *raw++ = 0x58; if (op == asmjit::arm::CondCode::kAlways) { // br x9 *raw++ = 0x20; *raw++ = 0x01; *raw++ = 0x1F; *raw++ = 0xD6; // nop *raw++ = 0x1F; *raw++ = 0x20; *raw++ = 0x03; *raw++ = 0xD5; // nop *raw++ = 0x1F; *raw++ = 0x20; *raw++ = 0x03; *raw++ = 0xD5; } else { // b.COND #8 -> b.COND do_branch switch (op) { case asmjit::arm::CondCode::kUnsignedLT: *raw++ = 0x43; break; case asmjit::arm::CondCode::kUnsignedGT: *raw++ = 0x48; break; default: asm("brk 0x42"); } *raw++ = 0x00; *raw++ = 0x00; *raw++ = 0x54; // b #16 -> b cont *raw++ = 0x04; *raw++ = 0x00; *raw++ = 0x00; *raw++ = 0x14; // do_branch: br x9 *raw++ = 0x20; *raw++ = 0x01; *raw++ = 0x1f; *raw++ = 0xD6; } // taddr std::memcpy(raw, &taddr, 8); raw += 8; // cont: next instruction }; #elif defined(ARCH_X64) // Allocate some writable executable memory u8* const wxptr = jit_runtime::alloc(size0 * 22 + 14, 16); if (!wxptr) { return nullptr; } // Raw assembly pointer u8* raw = wxptr; // Write jump instruction with rel32 immediate auto make_jump = [&](u8 op, auto target) { ensure(raw + 8 <= wxptr + size0 * 22 + 16); // Fallback to dispatch if no target const u64 taddr = target ? reinterpret_cast(target) : reinterpret_cast(tr_dispatch); // Compute the distance const s64 rel = taddr - reinterpret_cast(raw) - (op != 0xe9 ? 6 : 5); ensure(rel >= s32{smin} && rel <= s32{smax}); if (op != 0xe9) { // First jcc byte *raw++ = 0x0f; ensure((op >> 4) == 0x8); } *raw++ = op; const s32 r32 = static_cast(rel); std::memcpy(raw, &r32, 4); raw += 4; }; #endif workload.clear(); workload.reserve(size0); workload.emplace_back(); workload.back().size = size0; workload.back().level = 0; workload.back().from = -1; workload.back().rel32 = nullptr; workload.back().beg = beg; workload.back().end = _end; // LS address starting from PC is already loaded into rcx (see spu_runtime::tr_all) for (usz i = 0; i < workload.size(); i++) { // Get copy of the workload info auto w = workload[i]; // Split range in two parts auto it = w.beg; auto it2 = w.beg; u32 size1 = w.size / 2; u32 size2 = w.size - size1; std::advance(it2, w.size / 2); while (ensure(w.level < umax)) { it = it2; size1 = w.size - size2; if (w.level >= w.beg->first.size()) { // Cannot split: smallest function is a prefix of bigger ones (TODO) break; } const u32 x1 = ::at32(w.beg->first, w.level); if (!x1) { // Cannot split: some functions contain holes at this level w.level++; // Resort subrange starting from the new level std::stable_sort(w.beg, w.end, [&](const auto& a, const auto& b) { std::basic_string_view lhs = a.first; std::basic_string_view rhs = b.first; lhs.remove_prefix(w.level); rhs.remove_prefix(w.level); return lhs < rhs; }); continue; } // Adjust ranges (forward) while (it != w.end && x1 == ::at32(it->first, w.level)) { it++; size1++; } if (it == w.end) { // Cannot split: words are identical within the range at this level w.level++; } else { size2 = w.size - size1; break; } } if (w.rel32) { #if defined(ARCH_X64) // Patch rel32 linking it to the current location if necessary const s32 r32 = ::narrow(raw - w.rel32); std::memcpy(w.rel32 - 4, &r32, 4); #elif defined(ARCH_ARM64) // Rewrite jump address { u64 raw64 = reinterpret_cast(raw); memcpy(w.rel32 - 8, &raw64, 8); } #else #error "Unimplemented" #endif } if (w.level >= w.beg->first.size() || w.level >= it->first.size()) { // If functions cannot be compared, assume smallest function spu_log.error("Trampoline simplified at ??? (level=%u)", w.level); #if defined(ARCH_X64) make_jump(0xe9, w.beg->second); // jmp rel32 #elif defined(ARCH_ARM64) u64 branch_target = reinterpret_cast(w.beg->second); make_jump(asmjit::arm::CondCode::kAlways, branch_target); #else #error "Unimplemented" #endif continue; } // Value for comparison const u32 x = ::at32(it->first, w.level); // Adjust ranges (backward) while (it != m_flat_list.begin()) { it--; if (w.level >= it->first.size()) { it = m_flat_list.end(); break; } if (::at32(it->first, w.level) != x) { it++; break; } ensure(it != w.beg); size1--; size2++; } if (it == m_flat_list.end()) { spu_log.error("Trampoline simplified (II) at ??? (level=%u)", w.level); #if defined(ARCH_X64) make_jump(0xe9, w.beg->second); // jmp rel32 #elif defined(ARCH_ARM64) u64 branch_target = reinterpret_cast(w.beg->second); make_jump(asmjit::arm::CondCode::kAlways, branch_target); #else #error "Unimplemented" #endif continue; } // Emit 32-bit comparison #if defined(ARCH_X64) ensure(raw + 12 <= wxptr + size0 * 22 + 16); // "Asm overflow" #elif defined(ARCH_ARM64) ensure(raw + (4 * 4) <= wxptr + size0 * 128 + 16); #else #error "Unimplemented" #endif if (w.from != w.level) { // If necessary (level has advanced), emit load: mov eax, [rcx + addr] const u32 cmp_lsa = w.level * 4u; #if defined(ARCH_X64) if (cmp_lsa < 0x80) { *raw++ = 0x8b; *raw++ = 0x41; *raw++ = ::narrow(cmp_lsa); } else { *raw++ = 0x8b; *raw++ = 0x81; std::memcpy(raw, &cmp_lsa, 4); raw += 4; } #elif defined(ARCH_ARM64) // ldr w9, #8 *raw++ = 0x49; *raw++ = 0x00; *raw++ = 0x00; *raw++ = 0x18; // b #8 *raw++ = 0x02; *raw++ = 0x00; *raw++ = 0x00; *raw++ = 0x14; // cmp_lsa std::memcpy(raw, &cmp_lsa, 4); raw += 4; // ldr w1, [x7, x9] *raw++ = 0xE1; *raw++ = 0x68; *raw++ = 0x69; *raw++ = 0xB8; #else #error "Unimplemented" #endif } // Emit comparison: cmp eax, imm32 #if defined(ARCH_X64) *raw++ = 0x3d; std::memcpy(raw, &x, 4); raw += 4; #elif defined(ARCH_ARM64) // ldr w9, #8 *raw++ = 0x49; *raw++ = 0x00; *raw++ = 0x00; *raw++ = 0x18; // b #8 *raw++ = 0x02; *raw++ = 0x00; *raw++ = 0x00; *raw++ = 0x14; // x std::memcpy(raw, &x, 4); raw += 4; // cmp w1, w9 *raw++ = 0x3f; *raw++ = 0x00; *raw++ = 0x09; *raw++ = 0x6B; #else #error "Unimplemented" #endif // Low subrange target if (size1 == 1) { #if defined(ARCH_X64) make_jump(0x82, w.beg->second); // jb rel32 #elif defined(ARCH_ARM64) u64 branch_target = reinterpret_cast(w.beg->second); make_jump(asmjit::arm::CondCode::kUnsignedLT, branch_target); #else #error "Unimplemented" #endif } else { #if defined(ARCH_X64) make_jump(0x82, raw); // jb rel32 (stub) #elif defined(ARCH_ARM64) make_jump(asmjit::arm::CondCode::kUnsignedLT, raw); #else #error "Unimplemented" #endif auto& to = workload.emplace_back(w); to.end = it; to.size = size1; to.rel32 = raw; to.from = w.level; } // Second subrange target if (size2 == 1) { #if defined(ARCH_X64) make_jump(0xe9, it->second); // jmp rel32 #elif defined(ARCH_ARM64) u64 branch_target = reinterpret_cast(it->second); make_jump(asmjit::arm::CondCode::kAlways, branch_target); #else #error "Unimplemented" #endif } else { it2 = it; // Select additional midrange for equality comparison while (it2 != w.end && ::at32(it2->first, w.level) == x) { size2--; it2++; } if (it2 != w.end) { // High subrange target if (size2 == 1) { #if defined(ARCH_X64) make_jump(0x87, it2->second); // ja rel32 #elif defined(ARCH_ARM64) u64 branch_target = reinterpret_cast(it2->second); make_jump(asmjit::arm::CondCode::kUnsignedGT, branch_target); #else #throw "Unimplemented" #endif } else { #if defined(ARCH_X64) make_jump(0x87, raw); // ja rel32 (stub) #elif defined(ARCH_ARM64) make_jump(asmjit::arm::CondCode::kUnsignedGT, raw); #else #error "Unimplemented" #endif auto& to = workload.emplace_back(w); to.beg = it2; to.size = size2; to.rel32 = raw; to.from = w.level; } const u32 size3 = w.size - size1 - size2; if (size3 == 1) { #if defined(ARCH_X64) make_jump(0xe9, it->second); // jmp rel32 #elif defined(ARCH_ARM64) u64 branch_target = reinterpret_cast(it->second); make_jump(asmjit::arm::CondCode::kAlways, branch_target); #else #error "Unimplemented" #endif } else { #if defined(ARCH_X64) make_jump(0xe9, raw); // jmp rel32 (stub) #elif defined(ARCH_ARM64) make_jump(asmjit::arm::CondCode::kAlways, raw); #else #error "Unimplemented" #endif auto& to = workload.emplace_back(w); to.beg = it; to.end = it2; to.size = size3; to.rel32 = raw; to.from = w.level; } } else { #if defined(ARCH_X64) make_jump(0xe9, raw); // jmp rel32 (stub) #elif defined(ARCH_ARM64) make_jump(asmjit::arm::CondCode::kAlways, raw); #else #error "Unimplemented" #endif auto& to = workload.emplace_back(w); to.beg = it; to.size = w.size - size1; to.rel32 = raw; to.from = w.level; } } } workload.clear(); result = reinterpret_cast(reinterpret_cast(wxptr)); std::string fname; fmt::append(fname, "__ub%u", m_flat_list.size()); jit_announce(wxptr, raw - wxptr, fname); } if (auto _old = stuff_it->trampoline.compare_and_swap(nullptr, result)) { return _old; } // Install ubertrampoline auto& insert_to = ::at32(*spu_runtime::g_dispatcher, id_inst >> 12); auto _old = insert_to.load(); do { // Make sure we are replacing an older ubertrampoline but not newer one if (_old != tr_dispatch) { bool ok = false; for (auto it = stuff_it; it != stuff_end; ++it) { if (it->trampoline == _old) { ok = true; break; } } if (!ok) { return result; } } } while (!insert_to.compare_exchange(_old, result)); return result; } spu_function_t spu_runtime::find(const u32* ls, u32 addr) const { const u32 index = ls[addr / 4] >> 12; for (const auto& item : ::at32(m_stuff, index)) { if (const auto ptr = item.compiled.load()) { std::basic_string_view range{item.data.data.data(), item.data.data.size()}; range.remove_prefix((item.data.entry_point - item.data.lower_bound) / 4); if (addr / 4 + range.size() > 0x10000) { continue; } if (range.compare(0, range.size(), ls + addr / 4, range.size()) == 0) { return ptr; } } } return nullptr; } spu_function_t spu_runtime::make_branch_patchpoint(u16 data) const { #if defined(ARCH_X64) u8* const raw = jit_runtime::alloc(16, 16); if (!raw) { return nullptr; } // Save address of the following jmp (GHC CC 3rd argument) raw[0] = 0x4c; // lea r12, [rip+1] raw[1] = 0x8d; raw[2] = 0x25; raw[3] = 0x01; raw[4] = 0x00; raw[5] = 0x00; raw[6] = 0x00; raw[7] = 0x90; // nop // Jump to spu_recompiler_base::branch raw[8] = 0xe9; // Compute the distance const s64 rel = reinterpret_cast(tr_branch) - reinterpret_cast(raw + 8) - 5; std::memcpy(raw + 9, &rel, 4); raw[13] = 0xcc; raw[14] = data >> 8; raw[15] = data & 0xff; return reinterpret_cast(raw); #elif defined(ARCH_ARM64) #if defined(__APPLE__) pthread_jit_write_protect_np(false); #endif u8* const patch_fn = ensure(jit_runtime::alloc(36, 16)); u8* raw = patch_fn; // adr x21, #16 *raw++ = 0x95; *raw++ = 0x00; *raw++ = 0x00; *raw++ = 0x10; // nop x3 for (int i = 0; i < 3; i++) { *raw++ = 0x1F; *raw++ = 0x20; *raw++ = 0x03; *raw++ = 0xD5; } // ldr x9, #8 *raw++ = 0x49; *raw++ = 0x00; *raw++ = 0x00; *raw++ = 0x58; // br x9 *raw++ = 0x20; *raw++ = 0x01; *raw++ = 0x1F; *raw++ = 0xD6; u64 branch_target = reinterpret_cast(tr_branch); std::memcpy(raw, &branch_target, 8); raw += 8; *raw++ = static_cast(data >> 8); *raw++ = static_cast(data & 0xff); #if defined(__APPLE__) pthread_jit_write_protect_np(true); #endif // Flush all cache lines after potentially writing executable code asm("ISB"); asm("DSB ISH"); return reinterpret_cast(patch_fn); #else #error "Unimplemented" #endif } spu_recompiler_base::spu_recompiler_base() { } spu_recompiler_base::~spu_recompiler_base() { } void spu_recompiler_base::dispatch(spu_thread& spu, void*, u8* rip) { // If code verification failed from a patched patchpoint, clear it with a dispatcher jump if (rip) { #if defined(ARCH_X64) const s64 rel = reinterpret_cast(spu_runtime::tr_all) - reinterpret_cast(rip - 8) - 5; union { u8 bytes[8]; u64 result; }; bytes[0] = 0xe9; // jmp rel32 std::memcpy(bytes + 1, &rel, 4); bytes[5] = 0x66; // lnop (2 bytes) bytes[6] = 0x90; bytes[7] = 0x90; atomic_storage::release(*reinterpret_cast(rip - 8), result); #elif defined(ARCH_ARM64) union { u8 bytes[16]; u128 result; }; // ldr x9, #8 bytes[0] = 0x49; bytes[1] = 0x00; bytes[2] = 0x00; bytes[3] = 0x58; // br x9 bytes[4] = 0x20; bytes[5] = 0x01; bytes[6] = 0x1F; bytes[7] = 0xD6; const u64 target = reinterpret_cast(spu_runtime::tr_all); std::memcpy(bytes + 8, &target, 8); #if defined(__APPLE__) pthread_jit_write_protect_np(false); #endif atomic_storage::release(*reinterpret_cast(rip), result); #if defined(__APPLE__) pthread_jit_write_protect_np(true); #endif // Flush all cache lines after potentially writing executable code asm("ISB"); asm("DSB ISH"); #else #error "Unimplemented" #endif } // Second attempt (recover from the recursion after repeated unsuccessful trampoline call) if (spu.block_counter != spu.block_recover && &dispatch != ::at32(*spu_runtime::g_dispatcher, spu._ref>(spu.pc) >> 12)) { spu.block_recover = spu.block_counter; return; } spu.jit->init(); // Compile if (spu._ref(spu.pc) == 0u) { spu_runtime::g_escape(&spu); return; } const auto func = spu.jit->compile(spu.jit->analyse(spu._ptr(0), spu.pc)); if (!func) { spu_log.fatal("[0x%05x] Compilation failed.", spu.pc); return; } // Diagnostic if (g_cfg.core.spu_block_size == spu_block_size_type::giga) { const v128 _info = spu.stack_mirror[(spu.gpr[1]._u32[3] & 0x3fff0) >> 4]; if (_info._u64[0] + 1) { spu_log.trace("Called from 0x%x", _info._u32[2] - 4); } } #if defined(__APPLE__) pthread_jit_write_protect_np(true); #endif #if defined(ARCH_ARM64) // Flush all cache lines after potentially writing executable code asm("ISB"); asm("DSB ISH"); #endif spu_runtime::g_tail_escape(&spu, func, nullptr); } void spu_recompiler_base::branch(spu_thread& spu, void*, u8* rip) { #if defined(ARCH_X64) if (const u32 ls_off = ((rip[6] << 8) | rip[7]) * 4) #elif defined(ARCH_ARM64) if (const u32 ls_off = ((rip[16] << 8) | rip[17]) * 4) // See branch_patchpoint `data` #else #error "Unimplemented" #endif { spu_log.todo("Special branch patchpoint hit.\nPlease report to the developer (0x%05x).", ls_off); } // Find function const auto func = spu.jit->get_runtime().find(static_cast(spu._ptr(0)), spu.pc); if (!func) { return; } #if defined(ARCH_X64) // Overwrite jump to this function with jump to the compiled function const s64 rel = reinterpret_cast(func) - reinterpret_cast(rip) - 5; union { u8 bytes[8]; u64 result; }; if (rel >= s32{smin} && rel <= s32{smax}) { const s64 rel8 = (rel + 5) - 2; if (rel8 >= s8{smin} && rel8 <= s8{smax}) { bytes[0] = 0xeb; // jmp rel8 bytes[1] = static_cast(rel8); std::memset(bytes + 2, 0xcc, 4); } else { bytes[0] = 0xe9; // jmp rel32 std::memcpy(bytes + 1, &rel, 4); bytes[5] = 0xcc; } bytes[6] = rip[6]; bytes[7] = rip[7]; } else { fmt::throw_exception("Impossible far jump: %p -> %p", rip, func); } atomic_storage::release(*reinterpret_cast(rip), result); #elif defined(ARCH_ARM64) union { u8 bytes[16]; u128 result; }; // ldr x9, #8 bytes[0] = 0x49; bytes[1] = 0x00; bytes[2] = 0x00; bytes[3] = 0x58; // br x9 bytes[4] = 0x20; bytes[5] = 0x01; bytes[6] = 0x1F; bytes[7] = 0xD6; const u64 target = reinterpret_cast(func); std::memcpy(bytes + 8, &target, 8); #if defined(__APPLE__) pthread_jit_write_protect_np(false); #endif atomic_storage::release(*reinterpret_cast(rip), result); #if defined(__APPLE__) pthread_jit_write_protect_np(true); #endif // Flush all cache lines after potentially writing executable code asm("ISB"); asm("DSB ISH"); #else #error "Unimplemented" #endif spu_runtime::g_tail_escape(&spu, func, rip); } void spu_recompiler_base::old_interpreter(spu_thread& spu, void* ls, u8* /*rip*/) { if (g_cfg.core.spu_decoder != spu_decoder_type::_static) { fmt::throw_exception("Invalid SPU decoder"); } // Select opcode table const auto& table = g_fxo->get(); // LS pointer const auto base = static_cast(ls); while (true) { if (spu.state) [[unlikely]] { if (spu.check_state()) break; } const u32 op = *reinterpret_cast*>(base + spu.pc); if (table.decode(op)(spu, {op})) spu.pc += 4; } } std::vector spu_thread::discover_functions(u32 base_addr, std::span ls, bool is_known_addr, u32 /*entry*/) { std::vector calls; std::vector branches; calls.reserve(100); // Discover functions // Use the most simple method: search for instructions that calls them // And then filter invalid cases // TODO: Does not detect jumptables or fixed-addr indirect calls const v128 brasl_mask = is_known_addr ? v128::from32p(0x62u << 23) : v128::from32p(umax); for (u32 i = utils::align(base_addr, 0x10); i < std::min(base_addr + ::size32(ls), 0x3FFF0); i += 0x10) { // Search for BRSL LR and BRASL LR or BR // TODO: BISL const v128 inst = read_from_ptr>(ls.data(), i - base_addr); const v128 cleared_i16 = gv_and32(inst, v128::from32p(utils::rol32(~0xffff, 7))); const v128 eq_brsl = gv_eq32(cleared_i16, v128::from32p(0x66u << 23)); const v128 eq_brasl = gv_eq32(cleared_i16, brasl_mask); const v128 eq_br = gv_eq32(cleared_i16, v128::from32p(0x64u << 23)); const v128 result = eq_brsl | eq_brasl; if (!gv_testz(result)) { for (u32 j = 0; j < 4; j++) { if (result.u32r[j]) { calls.push_back(i + j * 4); } } } if (!gv_testz(eq_br)) { for (u32 j = 0; j < 4; j++) { if (eq_br.u32r[j]) { branches.push_back(i + j * 4); } } } } calls.erase(std::remove_if(calls.begin(), calls.end(), [&](u32 caller) { // Check the validity of both the callee code and the following caller code return !is_exec_code(caller, ls, base_addr, true) || !is_exec_code(caller + 4, ls, base_addr, true); }), calls.end()); branches.erase(std::remove_if(branches.begin(), branches.end(), [&](u32 caller) { // Check the validity of the callee code return !is_exec_code(caller, ls, base_addr, true); }), branches.end()); std::vector addrs; for (u32 addr : calls) { const spu_opcode_t op{read_from_ptr>(ls, addr - base_addr)}; const u32 func = op_branch_targets(addr, op)[0]; if (func == umax || addr + 4 == func || func == addr || std::count(addrs.begin(), addrs.end(), func)) { continue; } if (std::count(calls.begin(), calls.end(), func)) { // Cannot call another call instruction (link is overwritten) continue; } addrs.push_back(func); // Detect an "arguments passing" block, possible queue another function for (u32 next = func, it = 10; it && next >= base_addr && next < std::min(base_addr + ::size32(ls), 0x3FFF0); it--, next += 4) { const spu_opcode_t test_op{read_from_ptr>(ls, next - base_addr)}; const auto type = g_spu_itype.decode(test_op.opcode); if (type & spu_itype::branch && type != spu_itype::BR) { break; } if (type == spu_itype::UNK || !test_op.opcode) { break; } if (type != spu_itype::BR) { continue; } const u32 target = op_branch_targets(next, op)[0]; if (target == umax || addr + 4 == target || target == addr || std::count(addrs.begin(), addrs.end(), target)) { break; } // Detect backwards branch to the block in examination if (target >= func && target <= next) { break; } if (!is_exec_code(target, ls, base_addr, true)) { break; } addrs.push_back(target); break; } } for (u32 addr : branches) { const spu_opcode_t op{read_from_ptr>(ls, addr - base_addr)}; const u32 func = op_branch_targets(addr, op)[0]; if (func == umax || addr + 4 == func || func == addr || !addr) { continue; } // Search for AI R1, -x in the called code // Reasoning: AI R1, -x means stack frame creation, this is likely be a function for (u32 next = func, it = 10; it && next >= base_addr && next < std::min(base_addr + ::size32(ls), 0x3FFF0); it--, next += 4) { const spu_opcode_t test_op{read_from_ptr>(ls, next - base_addr)}; const auto type = g_spu_itype.decode(test_op.opcode); if (type & spu_itype::branch) { break; } if (type == spu_itype::UNK || !test_op.opcode) { break; } bool is_func = false; if (type == spu_itype::AI && test_op.rt == 1u && test_op.ra == 1u) { if (test_op.si10 >= 0) { break; } is_func = true; } if (!is_func) { continue; } addr = SPU_LS_SIZE + 4; // Terminate the next condition, no further checks needed if (std::count(addrs.begin(), addrs.end(), func)) { break; } addrs.push_back(func); break; } // Search for AI R1, +x or OR R3/4, Rx, 0 before the branch // Reasoning: AI R1, +x means stack pointer restoration, branch after that is likely a tail call // R3 and R4 are common function arguments because they are the first two for (u32 back = addr - 4, it = 10; it && back >= base_addr && back < std::min(base_addr + ::size32(ls), 0x3FFF0); it--, back -= 4) { const spu_opcode_t test_op{read_from_ptr>(ls, back - base_addr)}; const auto type = g_spu_itype.decode(test_op.opcode); if (type & spu_itype::branch) { break; } bool is_tail = false; if (type == spu_itype::AI && test_op.rt == 1u && test_op.ra == 1u) { if (test_op.si10 <= 0) { break; } is_tail = true; } else if (!(type & spu_itype::zregmod)) { const u32 op_rt = type & spu_itype::_quadrop ? +test_op.rt4 : +test_op.rt; if (op_rt >= 80u && (type != spu_itype::LQD || test_op.ra != 1u)) { // Modifying non-volatile registers, not a call (and not context restoration) break; } //is_tail = op_rt == 3u || op_rt == 4u; } if (!is_tail) { continue; } if (std::count(addrs.begin(), addrs.end(), func)) { break; } addrs.push_back(func); break; } } std::sort(addrs.begin(), addrs.end()); return addrs; } spu_program spu_recompiler_base::analyse(const be_t* ls, u32 entry_point, std::map>* out_target_list) { // Result: addr + raw instruction data spu_program result; result.data.reserve(10000); result.entry_point = entry_point; result.lower_bound = entry_point; // Initialize block entries m_block_info.reset(); m_block_info.set(entry_point / 4); m_entry_info.reset(); m_entry_info.set(entry_point / 4); m_ret_info.reset(); // Simple block entry workload list workload.clear(); workload.push_back(entry_point); std::memset(m_regmod.data(), 0xff, sizeof(m_regmod)); m_use_ra.reset(); m_use_rb.reset(); m_use_rc.reset(); m_targets.clear(); m_preds.clear(); m_preds[entry_point]; m_bbs.clear(); m_chunks.clear(); m_funcs.clear(); // Value flags (TODO: only is_const is implemented) enum class vf : u32 { is_const, is_mask, is_rel, __bitset_enum_max }; // Weak constant propagation context (for guessing branch targets) std::array, 128> vflags{}; // Associated constant values for 32-bit preferred slot std::array values; // SYNC instruction found bool sync = false; u32 hbr_loc = 0; u32 hbr_tg = -1; // Result bounds u32 lsa = entry_point; u32 limit = 0x40000; if (g_cfg.core.spu_block_size == spu_block_size_type::giga) { } for (u32 wi = 0, wa = workload[0]; wi < workload.size();) { const auto next_block = [&] { // Reset value information vflags.fill({}); sync = false; hbr_loc = 0; hbr_tg = -1; wi++; if (wi < workload.size()) { wa = workload[wi]; } }; const u32 pos = wa; const auto add_block = [&](u32 target) { // Validate new target (TODO) if (target >= lsa && target < limit) { // Check for redundancy if (!m_block_info[target / 4]) { m_block_info[target / 4] = true; workload.push_back(target); } // Add predecessor if (m_preds[target].find_first_of(pos) + 1 == 0) { m_preds[target].push_back(pos); } } }; if (pos < lsa || pos >= limit) { // Don't analyse if already beyond the limit next_block(); continue; } const u32 data = ls[pos / 4]; const auto op = spu_opcode_t{data}; wa += 4; m_targets.erase(pos); // Fill register access info if (auto iflags = g_spu_iflag.decode(data)) { if (+iflags & +spu_iflag::use_ra) m_use_ra.set(pos / 4); if (+iflags & +spu_iflag::use_rb) m_use_rb.set(pos / 4); if (+iflags & +spu_iflag::use_rc) m_use_rc.set(pos / 4); } // Analyse instruction switch (const auto type = g_spu_itype.decode(data)) { case spu_itype::UNK: case spu_itype::DFCEQ: case spu_itype::DFCMEQ: case spu_itype::DFCGT: case spu_itype::DFCMGT: case spu_itype::DFTSV: { // Stop before invalid instructions (TODO) next_block(); continue; } case spu_itype::SYNC: case spu_itype::STOP: case spu_itype::STOPD: { if (data == 0) { // Stop before null data next_block(); continue; } if (g_cfg.core.spu_block_size == spu_block_size_type::safe) { // Stop on special instructions (TODO) m_targets[pos]; next_block(); break; } if (type == spu_itype::SYNC) { // Remember sync = true; } break; } case spu_itype::IRET: { if (op.d && op.e) { spu_log.error("[0x%x] Invalid interrupt flags (DE)", pos); } m_targets[pos]; next_block(); break; } case spu_itype::BI: case spu_itype::BISL: case spu_itype::BISLED: case spu_itype::BIZ: case spu_itype::BINZ: case spu_itype::BIHZ: case spu_itype::BIHNZ: { if (op.d && op.e) { spu_log.error("[0x%x] Invalid interrupt flags (DE)", pos); } const auto af = vflags[op.ra]; const auto av = values[op.ra]; const bool sl = type == spu_itype::BISL || type == spu_itype::BISLED; if (sl) { m_regmod[pos / 4] = op.rt; vflags[op.rt] = +vf::is_const; values[op.rt] = pos + 4; } if (af & vf::is_const) { const u32 target = spu_branch_target(av); spu_log.warning("[0x%x] At 0x%x: indirect branch to 0x%x%s", entry_point, pos, target, op.d ? " (D)" : op.e ? " (E)" : ""); if (type == spu_itype::BI && target == pos + 4 && op.d) { // Disable interrupts idiom break; } m_targets[pos].push_back(target); if (g_cfg.core.spu_block_size == spu_block_size_type::giga) { if (sync) { spu_log.notice("[0x%x] At 0x%x: ignoring %scall to 0x%x (SYNC)", entry_point, pos, sl ? "" : "tail ", target); if (target > entry_point) { limit = std::min(limit, target); } } else { m_entry_info[target / 4] = true; add_block(target); } } else if (target > entry_point) { limit = std::min(limit, target); } if (sl && g_cfg.core.spu_block_size != spu_block_size_type::safe) { m_ret_info[pos / 4 + 1] = true; m_entry_info[pos / 4 + 1] = true; m_targets[pos].push_back(pos + 4); add_block(pos + 4); } } else if (type == spu_itype::BI && g_cfg.core.spu_block_size != spu_block_size_type::safe && !op.d && !op.e && !sync) { // Analyse jump table (TODO) std::basic_string jt_abs; std::basic_string jt_rel; const u32 start = pos + 4; u64 dabs = 0; u64 drel = 0; for (u32 i = start; i < limit; i += 4) { const u32 target = ls[i / 4]; if (target == 0 || target % 4) { // Address cannot be misaligned: abort break; } if (target >= lsa && target < 0x40000) { // Possible jump table entry (absolute) jt_abs.push_back(target); } if (target + start >= lsa && target + start < 0x40000) { // Possible jump table entry (relative) jt_rel.push_back(target + start); } if (std::max(jt_abs.size(), jt_rel.size()) * 4 + start <= i) { // Neither type of jump table completes jt_abs.clear(); jt_rel.clear(); break; } } // Choose position after the jt as an anchor and compute the average distance for (u32 target : jt_abs) { dabs += std::abs(static_cast(target - start - jt_abs.size() * 4)); } for (u32 target : jt_rel) { drel += std::abs(static_cast(target - start - jt_rel.size() * 4)); } // Add detected jump table blocks if (jt_abs.size() >= 3 || jt_rel.size() >= 3) { if (jt_abs.size() == jt_rel.size()) { if (dabs < drel) { jt_rel.clear(); } if (dabs > drel) { jt_abs.clear(); } ensure(jt_abs.size() != jt_rel.size()); } if (jt_abs.size() >= jt_rel.size()) { const u32 new_size = (start - lsa) / 4 + ::size32(jt_abs); if (result.data.size() < new_size) { result.data.resize(new_size); } for (u32 i = 0; i < jt_abs.size(); i++) { add_block(jt_abs[i]); result.data[(start - lsa) / 4 + i] = std::bit_cast>(jt_abs[i]); m_targets[start + i * 4]; } m_targets.emplace(pos, std::move(jt_abs)); } if (jt_rel.size() >= jt_abs.size()) { const u32 new_size = (start - lsa) / 4 + ::size32(jt_rel); if (result.data.size() < new_size) { result.data.resize(new_size); } for (u32 i = 0; i < jt_rel.size(); i++) { add_block(jt_rel[i]); result.data[(start - lsa) / 4 + i] = std::bit_cast>(jt_rel[i] - start); m_targets[start + i * 4]; } m_targets.emplace(pos, std::move(jt_rel)); } } else if (start + 12 * 4 < limit && ls[start / 4 + 0] == 0x1ce00408u && ls[start / 4 + 1] == 0x24000389u && ls[start / 4 + 2] == 0x24004809u && ls[start / 4 + 3] == 0x24008809u && ls[start / 4 + 4] == 0x2400c809u && ls[start / 4 + 5] == 0x24010809u && ls[start / 4 + 6] == 0x24014809u && ls[start / 4 + 7] == 0x24018809u && ls[start / 4 + 8] == 0x1c200807u && ls[start / 4 + 9] == 0x2401c809u) { spu_log.warning("[0x%x] Pattern 1 detected (hbr=0x%x:0x%x)", pos, hbr_loc, hbr_tg); // Add 8 targets (TODO) for (u32 addr = start + 4; addr < start + 36; addr += 4) { m_targets[pos].push_back(addr); add_block(addr); } } else if (hbr_loc > start && hbr_loc < limit && hbr_tg == start) { spu_log.warning("[0x%x] No patterns detected (hbr=0x%x:0x%x)", pos, hbr_loc, hbr_tg); } } else if (type == spu_itype::BI && sync) { spu_log.notice("[0x%x] At 0x%x: ignoring indirect branch (SYNC)", entry_point, pos); } if (type == spu_itype::BI || sl) { if (type == spu_itype::BI || g_cfg.core.spu_block_size == spu_block_size_type::safe) { m_targets[pos]; } else { m_ret_info[pos / 4 + 1] = true; m_entry_info[pos / 4 + 1] = true; m_targets[pos].push_back(pos + 4); add_block(pos + 4); } } else { m_targets[pos].push_back(pos + 4); add_block(pos + 4); } next_block(); break; } case spu_itype::BRSL: case spu_itype::BRASL: { const u32 target = spu_branch_target(type == spu_itype::BRASL ? 0 : pos, op.i16); m_regmod[pos / 4] = op.rt; vflags[op.rt] = +vf::is_const; values[op.rt] = pos + 4; if (type == spu_itype::BRSL && target == pos + 4) { // Get next instruction address idiom break; } m_targets[pos].push_back(target); if (g_cfg.core.spu_block_size != spu_block_size_type::safe) { m_ret_info[pos / 4 + 1] = true; m_entry_info[pos / 4 + 1] = true; m_targets[pos].push_back(pos + 4); add_block(pos + 4); } if (g_cfg.core.spu_block_size == spu_block_size_type::giga && !sync) { m_entry_info[target / 4] = true; add_block(target); } else { if (g_cfg.core.spu_block_size == spu_block_size_type::giga) { spu_log.notice("[0x%x] At 0x%x: ignoring fixed call to 0x%x (SYNC)", entry_point, pos, target); } if (target > entry_point) { limit = std::min(limit, target); } } next_block(); break; } case spu_itype::BRA: { const u32 target = spu_branch_target(0, op.i16); if (g_cfg.core.spu_block_size == spu_block_size_type::giga && !sync) { m_entry_info[target / 4] = true; } else { if (g_cfg.core.spu_block_size == spu_block_size_type::giga) { spu_log.notice("[0x%x] At 0x%x: ignoring fixed tail call to 0x%x (SYNC)", entry_point, pos, target); } } add_block(target); next_block(); break; } case spu_itype::BR: case spu_itype::BRZ: case spu_itype::BRNZ: case spu_itype::BRHZ: case spu_itype::BRHNZ: { const u32 target = spu_branch_target(pos, op.i16); if (target == pos + 4) { // Nop break; } m_targets[pos].push_back(target); add_block(target); if (type != spu_itype::BR) { m_targets[pos].push_back(pos + 4); add_block(pos + 4); } next_block(); break; } case spu_itype::DSYNC: case spu_itype::HEQ: case spu_itype::HEQI: case spu_itype::HGT: case spu_itype::HGTI: case spu_itype::HLGT: case spu_itype::HLGTI: case spu_itype::LNOP: case spu_itype::NOP: case spu_itype::MTSPR: case spu_itype::FSCRWR: case spu_itype::STQA: case spu_itype::STQD: case spu_itype::STQR: case spu_itype::STQX: { // Do nothing break; } case spu_itype::WRCH: { switch (op.ra) { case MFC_EAL: { m_regmod[pos / 4] = s_reg_mfc_eal; break; } case MFC_LSA: { m_regmod[pos / 4] = s_reg_mfc_lsa; break; } case MFC_TagID: { m_regmod[pos / 4] = s_reg_mfc_tag; break; } case MFC_Size: { m_regmod[pos / 4] = s_reg_mfc_size; break; } default: break; } break; } case spu_itype::LQA: case spu_itype::LQD: case spu_itype::LQR: case spu_itype::LQX: { // Unconst m_regmod[pos / 4] = op.rt; vflags[op.rt] = {}; break; } case spu_itype::HBR: { hbr_loc = spu_branch_target(pos, op.roh << 7 | op.rt); hbr_tg = vflags[op.ra] & vf::is_const && !op.c ? values[op.ra] & 0x3fffc : -1; break; } case spu_itype::HBRA: { hbr_loc = spu_branch_target(pos, op.r0h << 7 | op.rt); hbr_tg = spu_branch_target(0x0, op.i16); break; } case spu_itype::HBRR: { hbr_loc = spu_branch_target(pos, op.r0h << 7 | op.rt); hbr_tg = spu_branch_target(pos, op.i16); break; } case spu_itype::IL: { m_regmod[pos / 4] = op.rt; vflags[op.rt] = +vf::is_const; values[op.rt] = op.si16; break; } case spu_itype::ILA: { m_regmod[pos / 4] = op.rt; vflags[op.rt] = +vf::is_const; values[op.rt] = op.i18; break; } case spu_itype::ILH: { m_regmod[pos / 4] = op.rt; vflags[op.rt] = +vf::is_const; values[op.rt] = op.i16 << 16 | op.i16; break; } case spu_itype::ILHU: { m_regmod[pos / 4] = op.rt; vflags[op.rt] = +vf::is_const; values[op.rt] = op.i16 << 16; break; } case spu_itype::IOHL: { m_regmod[pos / 4] = op.rt; values[op.rt] = values[op.rt] | op.i16; break; } case spu_itype::ORI: { m_regmod[pos / 4] = op.rt; vflags[op.rt] = vflags[op.ra] & vf::is_const; values[op.rt] = values[op.ra] | op.si10; break; } case spu_itype::OR: { m_regmod[pos / 4] = op.rt; vflags[op.rt] = vflags[op.ra] & vflags[op.rb] & vf::is_const; values[op.rt] = values[op.ra] | values[op.rb]; break; } case spu_itype::ANDI: { m_regmod[pos / 4] = op.rt; vflags[op.rt] = vflags[op.ra] & vf::is_const; values[op.rt] = values[op.ra] & op.si10; break; } case spu_itype::AND: { m_regmod[pos / 4] = op.rt; vflags[op.rt] = vflags[op.ra] & vflags[op.rb] & vf::is_const; values[op.rt] = values[op.ra] & values[op.rb]; break; } case spu_itype::AI: { m_regmod[pos / 4] = op.rt; vflags[op.rt] = vflags[op.ra] & vf::is_const; values[op.rt] = values[op.ra] + op.si10; break; } case spu_itype::A: { m_regmod[pos / 4] = op.rt; vflags[op.rt] = vflags[op.ra] & vflags[op.rb] & vf::is_const; values[op.rt] = values[op.ra] + values[op.rb]; break; } case spu_itype::SFI: { m_regmod[pos / 4] = op.rt; vflags[op.rt] = vflags[op.ra] & vf::is_const; values[op.rt] = op.si10 - values[op.ra]; break; } case spu_itype::SF: { m_regmod[pos / 4] = op.rt; vflags[op.rt] = vflags[op.ra] & vflags[op.rb] & vf::is_const; values[op.rt] = values[op.rb] - values[op.ra]; break; } case spu_itype::ROTMI: { m_regmod[pos / 4] = op.rt; if ((0 - op.i7) & 0x20) { vflags[op.rt] = +vf::is_const; values[op.rt] = 0; break; } vflags[op.rt] = vflags[op.ra] & vf::is_const; values[op.rt] = values[op.ra] >> ((0 - op.i7) & 0x1f); break; } case spu_itype::SHLI: { m_regmod[pos / 4] = op.rt; if (op.i7 & 0x20) { vflags[op.rt] = +vf::is_const; values[op.rt] = 0; break; } vflags[op.rt] = vflags[op.ra] & vf::is_const; values[op.rt] = values[op.ra] << (op.i7 & 0x1f); break; } default: { // Unconst const u32 op_rt = type & spu_itype::_quadrop ? +op.rt4 : +op.rt; m_regmod[pos / 4] = op_rt; vflags[op_rt] = {}; break; } } // Insert raw instruction value const u32 new_size = (pos - lsa) / 4; if (result.data.size() <= new_size) { if (result.data.size() < new_size) { result.data.resize(new_size); } result.data.emplace_back(std::bit_cast>(data)); } else if (u32& raw_val = result.data[new_size]) { ensure(raw_val == std::bit_cast>(data)); } else { raw_val = std::bit_cast>(data); } } while (lsa > 0 || limit < 0x40000) { const u32 initial_size = ::size32(result.data); // Check unreachable blocks limit = std::min(limit, lsa + initial_size * 4); for (auto& pair : m_preds) { bool reachable = false; if (pair.first >= limit) { continue; } // All (direct and indirect) predecessors to check std::basic_string workload; // Bit array used to deduplicate workload list workload.push_back(pair.first); m_bits[pair.first / 4] = true; for (usz i = 0; !reachable && i < workload.size(); i++) { for (u32 j = workload[i];; j -= 4) { // Go backward from an address until the entry point is reached if (j == entry_point) { reachable = true; break; } const auto found = m_preds.find(j); bool had_fallthrough = false; if (found != m_preds.end()) { for (u32 new_pred : found->second) { // Check whether the predecessor is previous instruction if (new_pred == j - 4) { had_fallthrough = true; continue; } // Check whether in range and not already added if (new_pred >= lsa && new_pred < limit && !m_bits[new_pred / 4]) { workload.push_back(new_pred); m_bits[new_pred / 4] = true; } } } // Check for possible fallthrough predecessor if (!had_fallthrough) { if (::at32(result.data, (j - lsa) / 4 - 1) == 0 || m_targets.count(j - 4)) { break; } } if (i == 0) { // TODO } } } for (u32 pred : workload) { m_bits[pred / 4] = false; } if (!reachable && pair.first < limit) { limit = pair.first; } } result.data.resize((limit - lsa) / 4); // Check holes in safe mode (TODO) u32 valid_size = 0; for (u32 i = 0; i < result.data.size(); i++) { if (result.data[i] == 0) { const u32 pos = lsa + i * 4; const u32 data = ls[pos / 4]; // Allow only NOP or LNOP instructions in holes if (data == 0x200000 || (data & 0xffffff80) == 0x40200000) { continue; } if (g_cfg.core.spu_block_size != spu_block_size_type::giga) { result.data.resize(valid_size); break; } } else { valid_size = i + 1; } } // Even if NOP or LNOP, should be removed at the end result.data.resize(valid_size); // Repeat if blocks were removed if (result.data.size() == initial_size) { break; } } limit = std::min(limit, lsa + ::size32(result.data) * 4); // Cleanup block info for (u32 i = 0; i < workload.size(); i++) { const u32 addr = workload[i]; if (addr < lsa || addr >= limit || !result.data[(addr - lsa) / 4]) { m_block_info[addr / 4] = false; m_entry_info[addr / 4] = false; m_ret_info[addr / 4] = false; m_preds.erase(addr); } } // Complete m_preds and associated m_targets for adjacent blocks for (auto it = m_preds.begin(); it != m_preds.end();) { if (it->first < lsa || it->first >= limit) { it = m_preds.erase(it); continue; } // Erase impossible predecessors const auto new_end = std::remove_if(it->second.begin(), it->second.end(), [&](u32 addr) { return addr < lsa || addr >= limit; }); it->second.erase(new_end, it->second.end()); // Don't add fallthrough target if all predecessors are removed if (it->second.empty() && !m_entry_info[it->first / 4]) { // If not an entry point, remove the block completely m_block_info[it->first / 4] = false; it = m_preds.erase(it); continue; } // Previous instruction address const u32 prev = (it->first - 4) & 0x3fffc; // TODO: check the correctness if (m_targets.count(prev) == 0 && prev >= lsa && prev < limit && result.data[(prev - lsa) / 4]) { // Add target and the predecessor m_targets[prev].push_back(it->first); it->second.push_back(prev); } it++; } if (out_target_list) { out_target_list->insert(m_targets.begin(), m_targets.end()); } // Remove unnecessary target lists for (auto it = m_targets.begin(); it != m_targets.end();) { if (it->first < lsa || it->first >= limit) { it = m_targets.erase(it); continue; } it++; } // Fill holes which contain only NOP and LNOP instructions (TODO: compile) for (u32 i = 0, nnop = 0, vsize = 0; i <= result.data.size(); i++) { if (i >= result.data.size() || result.data[i]) { if (nnop && nnop == i - vsize) { // Write only complete NOP sequence for (u32 j = vsize; j < i; j++) { result.data[j] = std::bit_cast>(ls[lsa / 4 + j]); } } nnop = 0; vsize = i + 1; } else { const u32 pos = lsa + i * 4; const u32 data = ls[pos / 4]; if (data == 0x200000 || (data & 0xffffff80) == 0x40200000) { nnop++; } } } // Fill block info for (auto& pred : m_preds) { auto& block = m_bbs[pred.first]; // Copy predeccessors (wrong at this point, needs a fixup later) block.preds = pred.second; // Fill register usage info for (u32 ia = pred.first; ia < limit; ia += 4) { block.size++; // Decode instruction const spu_opcode_t op{std::bit_cast>(result.data[(ia - lsa) / 4])}; const auto type = g_spu_itype.decode(op.opcode); u8 reg_save = 255; if (type == spu_itype::STQD && op.ra == s_reg_sp && !block.reg_mod[op.rt] && !block.reg_use[op.rt]) { // Register saved onto the stack before use block.reg_save_dom[op.rt] = true; reg_save = op.rt; } for (auto _use : std::initializer_list>{{op.ra, m_use_ra.test(ia / 4)} , {op.rb, m_use_rb.test(ia / 4)}, {op.rc, m_use_rc.test(ia / 4)}}) { if (_use.second) { const u32 reg = _use.first; // Register reg use only if it happens before reg mod if (!block.reg_mod[reg]) { block.reg_use.set(reg); if (reg_save != reg && block.reg_save_dom[reg]) { // Register is still used after saving; probably not eligible for optimization block.reg_save_dom[reg] = false; } } } } if (type == spu_itype::WRCH && op.ra == MFC_Cmd) { // Expand MFC_Cmd reg use for (u8 reg : {s_reg_mfc_lsa, s_reg_mfc_tag, s_reg_mfc_size}) { if (!block.reg_mod[reg]) block.reg_use.set(reg); } } // Register reg modification if (u8 reg = m_regmod[ia / 4]; reg < s_reg_max) { block.reg_mod.set(reg); block.reg_mod_xf.set(reg, type & spu_itype::xfloat); if (type == spu_itype::SELB && (block.reg_mod_xf[op.ra] || block.reg_mod_xf[op.rb])) block.reg_mod_xf.set(reg); // Possible post-dominating register load if (type == spu_itype::LQD && op.ra == s_reg_sp) block.reg_load_mod[reg] = ia + 1; else block.reg_load_mod[reg] = 0; } // Find targets (also means end of the block) const auto tfound = m_targets.find(ia); if (tfound != m_targets.end()) { // Copy targets block.targets = tfound->second; // Assume that the call reads and modifies all volatile registers (TODO) bool is_call = false; bool is_tail = false; switch (type) { case spu_itype::BRSL: is_call = spu_branch_target(ia, op.i16) != ia + 4; break; case spu_itype::BRASL: is_call = spu_branch_target(0, op.i16) != ia + 4; break; case spu_itype::BISL: case spu_itype::BISLED: is_call = true; break; default: break; } if (is_call) { for (u32 i = 0; i < s_reg_max; ++i) { if (i == s_reg_lr || (i >= 2 && i < s_reg_80) || i > s_reg_127) { if (!block.reg_mod[i]) block.reg_use.set(i); if (!is_tail) { block.reg_mod.set(i); block.reg_mod_xf[i] = false; } } } } break; } } } // Fixup block predeccessors to point to basic blocks, not last instructions for (auto& bb : m_bbs) { const u32 addr = bb.first; for (u32& pred : bb.second.preds) { pred = std::prev(m_bbs.upper_bound(pred))->first; } if (m_entry_info[addr / 4] && g_cfg.core.spu_block_size == spu_block_size_type::giga) { // Register empty chunk m_chunks.push_back(addr); // Register function if necessary if (!m_ret_info[addr / 4]) { m_funcs[addr]; } } } // Ensure there is a function at the lowest address if (g_cfg.core.spu_block_size == spu_block_size_type::giga) { if (auto emp = m_funcs.try_emplace(m_bbs.begin()->first); emp.second) { const u32 addr = emp.first->first; spu_log.error("[0x%05x] Fixed first function at 0x%05x", entry_point, addr); m_entry_info[addr / 4] = true; m_ret_info[addr / 4] = false; } } // Split functions while (g_cfg.core.spu_block_size == spu_block_size_type::giga) { bool need_repeat = false; u32 start = 0; u32 limit = 0x40000; // Walk block list in ascending order for (auto& block : m_bbs) { const u32 addr = block.first; if (m_entry_info[addr / 4] && !m_ret_info[addr / 4]) { const auto upper = m_funcs.upper_bound(addr); start = addr; limit = upper == m_funcs.end() ? 0x40000 : upper->first; } // Find targets that exceed [start; limit) range and make new functions from them for (u32 target : block.second.targets) { const auto tfound = m_bbs.find(target); if (tfound == m_bbs.end()) { continue; } if (target < start || target >= limit) { if (!m_entry_info[target / 4] || m_ret_info[target / 4]) { // Create new function entry (likely a tail call) m_entry_info[target / 4] = true; m_ret_info[target / 4] = false; m_funcs.try_emplace(target); if (target < limit) { need_repeat = true; } } } } block.second.func = start; } if (!need_repeat) { break; } } if (!m_bbs.count(entry_point)) { // Invalid code spu_log.error("[0x%x] Invalid code", entry_point); return {}; } // Fill entry map while (true) { workload.clear(); workload.push_back(entry_point); ensure(m_bbs.count(entry_point)); std::basic_string new_entries; for (u32 wi = 0; wi < workload.size(); wi++) { const u32 addr = workload[wi]; auto& block = ::at32(m_bbs, addr); const u32 _new = block.chunk; if (!m_entry_info[addr / 4]) { // Check block predecessors for (u32 pred : block.preds) { const u32 _old = ::at32(m_bbs, pred).chunk; if (_old < 0x40000 && _old != _new) { // If block has multiple 'entry' points, it becomes an entry point itself new_entries.push_back(addr); } } } // Update chunk address block.chunk = m_entry_info[addr / 4] ? addr : _new; // Process block targets for (u32 target : block.targets) { const auto tfound = m_bbs.find(target); if (tfound == m_bbs.end()) { continue; } auto& tb = tfound->second; const u32 value = m_entry_info[target / 4] ? target : block.chunk; if (u32& tval = tb.chunk; tval < 0x40000) { // TODO: fix condition if (tval != value && !m_entry_info[target / 4]) { new_entries.push_back(target); } } else { tval = value; workload.emplace_back(target); } } } if (new_entries.empty()) { break; } for (u32 entry : new_entries) { m_entry_info[entry / 4] = true; // Acknowledge artificial (reversible) chunk entry point m_ret_info[entry / 4] = true; } for (auto& bb : m_bbs) { // Reset chunk info bb.second.chunk = 0x40000; } } workload.clear(); workload.push_back(entry_point); // Fill workload adding targets for (u32 wi = 0; wi < workload.size(); wi++) { const u32 addr = workload[wi]; auto& block = ::at32(m_bbs, addr); block.analysed = true; for (u32 target : block.targets) { const auto tfound = m_bbs.find(target); if (tfound == m_bbs.end()) { continue; } auto& tb = tfound->second; if (!tb.analysed) { workload.push_back(target); tb.analysed = true; } // Limited xfloat hint propagation (possibly TODO) if (tb.chunk == block.chunk) { tb.reg_maybe_xf &= block.reg_mod_xf; } else { tb.reg_maybe_xf.reset(); } } block.reg_origin.fill(0x80000000); block.reg_origin_abs.fill(0x80000000); } // Fill register origin info while (true) { bool must_repeat = false; for (u32 wi = 0; wi < workload.size(); wi++) { const u32 addr = workload[wi]; auto& block = ::at32(m_bbs, addr); // Initialize entry point with default value: unknown origin (requires load) if (m_entry_info[addr / 4]) { for (u32 i = 0; i < s_reg_max; i++) { if (block.reg_origin[i] == 0x80000000) block.reg_origin[i] = 0x40000; } } if (g_cfg.core.spu_block_size == spu_block_size_type::giga && m_entry_info[addr / 4] && !m_ret_info[addr / 4]) { for (u32 i = 0; i < s_reg_max; i++) { if (block.reg_origin_abs[i] == 0x80000000) block.reg_origin_abs[i] = 0x40000; else if (block.reg_origin_abs[i] + 1 == 0) block.reg_origin_abs[i] = -2; } } for (u32 target : block.targets) { const auto tfound = m_bbs.find(target); if (tfound == m_bbs.end()) { continue; } auto& tb = tfound->second; for (u32 i = 0; i < s_reg_max; i++) { if (tb.chunk == block.chunk && tb.reg_origin[i] + 1) { const u32 expected = block.reg_mod[i] ? addr : block.reg_origin[i]; if (tb.reg_origin[i] == 0x80000000) { tb.reg_origin[i] = expected; } else if (tb.reg_origin[i] != expected) { // Set -1 if multiple origins merged (requires PHI node) tb.reg_origin[i] = -1; must_repeat |= !tb.targets.empty(); } } if (g_cfg.core.spu_block_size == spu_block_size_type::giga && tb.func == block.func && tb.reg_origin_abs[i] + 2) { const u32 expected = block.reg_mod[i] ? addr : block.reg_origin_abs[i]; if (tb.reg_origin_abs[i] == 0x80000000) { tb.reg_origin_abs[i] = expected; } else if (tb.reg_origin_abs[i] != expected) { if (tb.reg_origin_abs[i] == 0x40000 || expected + 2 == 0 || expected == 0x40000) { // Set -2: sticky value indicating possible external reg origin (0x40000) tb.reg_origin_abs[i] = -2; must_repeat |= !tb.targets.empty(); } else if (tb.reg_origin_abs[i] + 1) { tb.reg_origin_abs[i] = -1; must_repeat |= !tb.targets.empty(); } } } } } } if (!must_repeat) { break; } for (u32 wi = 0; wi < workload.size(); wi++) { const u32 addr = workload[wi]; auto& block = ::at32(m_bbs, addr); // Reset values for the next attempt (keep negative values) for (u32 i = 0; i < s_reg_max; i++) { if (block.reg_origin[i] <= 0x40000) block.reg_origin[i] = 0x80000000; if (block.reg_origin_abs[i] <= 0x40000) block.reg_origin_abs[i] = 0x80000000; } } } // Fill more block info for (u32 wi = 0; wi < workload.size(); wi++) { if (g_cfg.core.spu_block_size != spu_block_size_type::giga) { break; } const u32 addr = workload[wi]; auto& bb = ::at32(m_bbs, addr); auto& func = ::at32(m_funcs, bb.func); // Update function size func.size = std::max(func.size, bb.size + (addr - bb.func) / 4); // Copy constants according to reg origin info for (u32 i = 0; i < s_reg_max; i++) { const u32 orig = bb.reg_origin_abs[i]; if (orig < 0x40000) { auto& src = ::at32(m_bbs, orig); bb.reg_const[i] = src.reg_const[i]; bb.reg_val32[i] = src.reg_val32[i]; } if (!bb.reg_save_dom[i] && bb.reg_use[i] && (orig == 0x40000 || orig + 2 == 0)) { // Destroy offset if external reg value is used func.reg_save_off[i] = -1; } } if (u32 orig = bb.reg_origin_abs[s_reg_sp]; orig < 0x40000) { auto& prologue = ::at32(m_bbs, orig); // Copy stack offset (from the assumed prologue) bb.stack_sub = prologue.stack_sub; } else if (orig > 0x40000) { // Unpredictable stack bb.stack_sub = 0x80000000; } spu_opcode_t op{}; auto last_inst = spu_itype::UNK; for (u32 ia = addr; ia < addr + bb.size * 4; ia += 4) { // Decode instruction again op.opcode = std::bit_cast>(result.data[(ia - lsa) / 41]); last_inst = g_spu_itype.decode(op.opcode); // Propagate some constants switch (last_inst) { case spu_itype::IL: { bb.reg_const[op.rt] = true; bb.reg_val32[op.rt] = op.si16; break; } case spu_itype::ILA: { bb.reg_const[op.rt] = true; bb.reg_val32[op.rt] = op.i18; break; } case spu_itype::ILHU: { bb.reg_const[op.rt] = true; bb.reg_val32[op.rt] = op.i16 << 16; break; } case spu_itype::ILH: { bb.reg_const[op.rt] = true; bb.reg_val32[op.rt] = op.i16 << 16 | op.i16; break; } case spu_itype::IOHL: { bb.reg_val32[op.rt] = bb.reg_val32[op.rt] | op.i16; break; } case spu_itype::ORI: { bb.reg_const[op.rt] = bb.reg_const[op.ra]; bb.reg_val32[op.rt] = bb.reg_val32[op.ra] | op.si10; break; } case spu_itype::OR: { bb.reg_const[op.rt] = bb.reg_const[op.ra] && bb.reg_const[op.rb]; bb.reg_val32[op.rt] = bb.reg_val32[op.ra] | bb.reg_val32[op.rb]; break; } case spu_itype::AI: { bb.reg_const[op.rt] = bb.reg_const[op.ra]; bb.reg_val32[op.rt] = bb.reg_val32[op.ra] + op.si10; break; } case spu_itype::A: { bb.reg_const[op.rt] = bb.reg_const[op.ra] && bb.reg_const[op.rb]; bb.reg_val32[op.rt] = bb.reg_val32[op.ra] + bb.reg_val32[op.rb]; break; } case spu_itype::SFI: { bb.reg_const[op.rt] = bb.reg_const[op.ra]; bb.reg_val32[op.rt] = op.si10 - bb.reg_val32[op.ra]; break; } case spu_itype::SF: { bb.reg_const[op.rt] = bb.reg_const[op.ra] && bb.reg_const[op.rb]; bb.reg_val32[op.rt] = bb.reg_val32[op.rb] - bb.reg_val32[op.ra]; break; } case spu_itype::STQD: { if (op.ra == s_reg_sp && bb.stack_sub != 0x80000000 && bb.reg_save_dom[op.rt]) { const u32 offset = 0x80000000 + op.si10 * 16 - bb.stack_sub; if (func.reg_save_off[op.rt] == 0) { // Store reg save offset func.reg_save_off[op.rt] = offset; } else if (func.reg_save_off[op.rt] != offset) { // Conflict of different offsets func.reg_save_off[op.rt] = -1; } } break; } case spu_itype::LQD: { if (op.ra == s_reg_sp && bb.stack_sub != 0x80000000 && bb.reg_load_mod[op.rt] == ia + 1) { // Adjust reg load offset bb.reg_load_mod[op.rt] = 0x80000000 + op.si10 * 16 - bb.stack_sub; } // Clear const bb.reg_const[op.rt] = false; break; } default: { // Clear const if reg is modified here if (u8 reg = m_regmod[ia / 4]; reg < s_reg_max) bb.reg_const[reg] = false; break; } } // $SP is modified if (m_regmod[ia / 4] == s_reg_sp) { if (bb.reg_const[s_reg_sp]) { // Making $SP a constant is a funny thing too. bb.stack_sub = 0x80000000; } if (bb.stack_sub != 0x80000000) { switch (last_inst) { case spu_itype::AI: { if (op.ra == s_reg_sp) bb.stack_sub -= op.si10; else bb.stack_sub = 0x80000000; break; } case spu_itype::A: { if (op.ra == s_reg_sp && bb.reg_const[op.rb]) bb.stack_sub -= bb.reg_val32[op.rb]; else if (op.rb == s_reg_sp && bb.reg_const[op.ra]) bb.stack_sub -= bb.reg_val32[op.ra]; else bb.stack_sub = 0x80000000; break; } case spu_itype::SF: { if (op.rb == s_reg_sp && bb.reg_const[op.ra]) bb.stack_sub += bb.reg_val32[op.ra]; else bb.stack_sub = 0x80000000; break; } default: { bb.stack_sub = 0x80000000; break; } } } // Check for funny values. if (bb.stack_sub >= 0x40000 || bb.stack_sub % 16) { bb.stack_sub = 0x80000000; } } } // Analyse terminator instruction const u32 tia = addr + bb.size * 4 - 4; switch (last_inst) { case spu_itype::BR: case spu_itype::BRNZ: case spu_itype::BRZ: case spu_itype::BRHNZ: case spu_itype::BRHZ: case spu_itype::BRSL: { const u32 target = spu_branch_target(tia, op.i16); if (target == tia + 4) { bb.terminator = term_type::fallthrough; } else if (last_inst != spu_itype::BRSL) { // No-op terminator or simple branch instruction bb.terminator = term_type::br; if (target == bb.func) { // Recursive tail call bb.terminator = term_type::ret; } } else if (op.rt == s_reg_lr) { bb.terminator = term_type::call; } else { bb.terminator = term_type::interrupt_call; } break; } case spu_itype::BRA: case spu_itype::BRASL: { bb.terminator = term_type::indirect_call; break; } case spu_itype::BI: { if (op.d || op.e || bb.targets.size() == 1) { bb.terminator = term_type::interrupt_call; } else if (bb.targets.size() > 1) { // Jump table bb.terminator = term_type::br; } else if (op.ra == s_reg_lr) { // Return (TODO) bb.terminator = term_type::ret; } else { // Indirect tail call (TODO) bb.terminator = term_type::interrupt_call; } break; } case spu_itype::BISLED: case spu_itype::IRET: { bb.terminator = term_type::interrupt_call; break; } case spu_itype::BISL: case spu_itype::BIZ: case spu_itype::BINZ: case spu_itype::BIHZ: case spu_itype::BIHNZ: { if (op.d || op.e || bb.targets.size() != 1) { bb.terminator = term_type::interrupt_call; } else if (last_inst != spu_itype::BISL && bb.targets[0] == tia + 4 && op.ra == s_reg_lr) { // Conditional return (TODO) bb.terminator = term_type::ret; } else if (last_inst == spu_itype::BISL) { // Indirect call bb.terminator = term_type::indirect_call; } else { // TODO bb.terminator = term_type::interrupt_call; } break; } default: { // Normal instruction bb.terminator = term_type::fallthrough; break; } } } // Check function blocks, verify and print some reasons for (auto& f : m_funcs) { if (g_cfg.core.spu_block_size != spu_block_size_type::giga) { break; } bool is_ok = true; u32 used_stack = 0; for (auto it = m_bbs.lower_bound(f.first); it != m_bbs.end() && it->second.func == f.first; ++it) { auto& bb = it->second; auto& func = ::at32(m_funcs, bb.func); const u32 addr = it->first; const u32 flim = bb.func + func.size * 4; used_stack |= bb.stack_sub; if (is_ok && bb.terminator >= term_type::indirect_call) { is_ok = false; } if (is_ok && bb.terminator == term_type::ret) { // Check $LR (alternative return registers are currently not supported) if (u32 lr_orig = bb.reg_mod[s_reg_lr] ? addr : bb.reg_origin_abs[s_reg_lr]; lr_orig < 0x40000) { auto& src = ::at32(m_bbs, lr_orig); if (src.reg_load_mod[s_reg_lr] != func.reg_save_off[s_reg_lr]) { spu_log.error("Function 0x%05x: [0x%05x] $LR mismatch (src=0x%x; 0x%x vs 0x%x)", f.first, addr, lr_orig, src.reg_load_mod[0], func.reg_save_off[0]); is_ok = false; } else if (src.reg_load_mod[s_reg_lr] == 0) { spu_log.error("Function 0x%05x: [0x%05x] $LR modified (src=0x%x)", f.first, addr, lr_orig); is_ok = false; } } else if (lr_orig > 0x40000) { spu_log.todo("Function 0x%05x: [0x%05x] $LR unpredictable (src=0x%x)", f.first, addr, lr_orig); is_ok = false; } // Check $80..$127 (should be restored or unmodified) for (u32 i = s_reg_80; is_ok && i <= s_reg_127; i++) { if (u32 orig = bb.reg_mod[i] ? addr : bb.reg_origin_abs[i]; orig < 0x40000) { auto& src = ::at32(m_bbs, orig); if (src.reg_load_mod[i] != func.reg_save_off[i]) { spu_log.error("Function 0x%05x: [0x%05x] $%u mismatch (src=0x%x; 0x%x vs 0x%x)", f.first, addr, i, orig, src.reg_load_mod[i], func.reg_save_off[i]); is_ok = false; } } else if (orig > 0x40000) { spu_log.todo("Function 0x%05x: [0x%05x] $%u unpredictable (src=0x%x)", f.first, addr, i, orig); is_ok = false; } if (func.reg_save_off[i] + 1 == 0) { spu_log.error("Function 0x%05x: [0x%05x] $%u used incorrectly", f.first, addr, i); is_ok = false; } } // Check $SP (should be restored or unmodified) if (bb.stack_sub != 0 && bb.stack_sub != 0x80000000) { spu_log.error("Function 0x%05x: [0x%05x] return with stack frame 0x%x", f.first, addr, bb.stack_sub); is_ok = false; } } if (is_ok && bb.terminator == term_type::call) { // Check call instruction (TODO) if (bb.stack_sub == 0) { // Call without a stack frame spu_log.error("Function 0x%05x: [0x%05x] frameless call", f.first, addr); is_ok = false; } } if (is_ok && bb.terminator == term_type::fallthrough) { // Can't just fall out of the function if (bb.targets.size() != 1 || bb.targets[0] >= flim) { spu_log.error("Function 0x%05x: [0x%05x] bad fallthrough to 0x%x", f.first, addr, bb.targets[0]); is_ok = false; } } if (is_ok && bb.stack_sub == 0x80000000) { spu_log.error("Function 0x%05x: [0x%05x] bad stack frame", f.first, addr); is_ok = false; } // Fill external function targets (calls, possibly tail calls) for (u32 target : bb.targets) { if (target < bb.func || target >= flim || (bb.terminator == term_type::call && target == bb.func)) { if (func.calls.find_first_of(target) + 1 == 0) { func.calls.push_back(target); } } } } if (is_ok && used_stack && f.first == entry_point) { spu_log.error("Function 0x%05x: considered possible chunk", f.first); is_ok = false; } // if (is_ok && f.first > 0x1d240 && f.first < 0x1e000) // { // spu_log.error("Function 0x%05x: manually disabled", f.first); // is_ok = false; // } f.second.good = is_ok; } // Check function call graph while (g_cfg.core.spu_block_size == spu_block_size_type::giga) { bool need_repeat = false; for (auto& f : m_funcs) { if (!f.second.good) { continue; } for (u32 call : f.second.calls) { const auto ffound = std::as_const(m_funcs).find(call); if (ffound == m_funcs.cend() || ffound->second.good == false) { need_repeat = true; if (f.second.good) { spu_log.error("Function 0x%05x: calls bad function (0x%05x)", f.first, call); f.second.good = false; } } } } if (!need_repeat) { break; } } if (result.data.empty()) { // Blocks starting from 0x0 or invalid instruction won't be compiled, may need special interpreter fallback } return result; } void spu_recompiler_base::dump(const spu_program& result, std::string& out) { SPUDisAsm dis_asm(cpu_disasm_mode::dump, reinterpret_cast(result.data.data()), result.lower_bound); std::string hash; if (!result.data.empty()) { sha1_context ctx; u8 output[20]; sha1_starts(&ctx); sha1_update(&ctx, reinterpret_cast(result.data.data()), result.data.size() * 4); sha1_finish(&ctx, output); fmt::append(hash, "%s", fmt::base57(output)); } else { hash = "N/A"; } fmt::append(out, "========== SPU BLOCK 0x%05x (size %u, %s) ==========\n\n", result.entry_point, result.data.size(), hash); for (auto& bb : m_bbs) { for (u32 pos = bb.first, end = bb.first + bb.second.size * 4; pos < end; pos += 4) { dis_asm.disasm(pos); if (!dis_asm.last_opcode.ends_with('\n')) { dis_asm.last_opcode += '\n'; } fmt::append(out, ">%s", dis_asm.last_opcode); } out += '\n'; if (m_block_info[bb.first / 4]) { fmt::append(out, "A: [0x%05x] %s\n", bb.first, m_entry_info[bb.first / 4] ? (m_ret_info[bb.first / 4] ? "Chunk" : "Entry") : "Block"); fmt::append(out, "\tF: 0x%05x\n", bb.second.func); for (u32 pred : bb.second.preds) { fmt::append(out, "\t<- 0x%05x\n", pred); } for (u32 target : bb.second.targets) { fmt::append(out, "\t-> 0x%05x%s\n", target, m_bbs.count(target) ? "" : " (null)"); } } else { fmt::append(out, "A: [0x%05x] ?\n", bb.first); } out += '\n'; } for (auto& f : m_funcs) { fmt::append(out, "F: [0x%05x]%s\n", f.first, f.second.good ? " (good)" : " (bad)"); fmt::append(out, "\tN: 0x%05x\n", f.second.size * 4 + f.first); for (u32 call : f.second.calls) { fmt::append(out, "\t>> 0x%05x%s\n", call, m_funcs.count(call) ? "" : " (null)"); } } out += '\n'; } struct spu_llvm_worker { lf_queue> registered; void operator()() { // SPU LLVM Recompiler instance std::unique_ptr compiler; // Fake LS std::vector> ls; bool set_relax_flag = false; for (auto slice = registered.pop_all();; [&] { if (slice) { slice.pop_front(); } if (slice || thread_ctrl::state() == thread_state::aborting) { return; } if (set_relax_flag) { spu_thread::g_spu_work_count--; set_relax_flag = false; } thread_ctrl::wait_on(utils::bless>(®istered)[1], 0); slice = registered.pop_all(); }()) { auto* prog = slice.get(); if (thread_ctrl::state() == thread_state::aborting) { break; } if (!prog) { continue; } if (!prog->second) { break; } if (!compiler) { // Postponed initialization compiler = spu_recompiler_base::make_llvm_recompiler(); compiler->init(); ls.resize(SPU_LS_SIZE / sizeof(be_t)); } if (!set_relax_flag) { spu_thread::g_spu_work_count++; set_relax_flag = true; } const auto& func = *prog->second; // Get data start const u32 start = func.lower_bound; const u32 size0 = ::size32(func.data); // Initialize LS with function data only for (u32 i = 0, pos = start; i < size0; i++, pos += 4) { ls[pos / 4] = std::bit_cast>(func.data[i]); } // Call analyser spu_program func2 = compiler->analyse(ls.data(), func.entry_point); if (func2 != func) { spu_log.error("[0x%05x] SPU Analyser failed, %u vs %u", func2.entry_point, func2.data.size(), size0); } else if (const auto target = compiler->compile(std::move(func2))) { // Redirect old function (TODO: patch in multiple places) const s64 rel = reinterpret_cast(target) - prog->first - 5; union { u8 bytes[8]; u64 result; }; bytes[0] = 0xe9; // jmp rel32 std::memcpy(bytes + 1, &rel, 4); bytes[5] = 0x90; bytes[6] = 0x90; bytes[7] = 0x90; atomic_storage::release(*reinterpret_cast(prog->first), result); } else { spu_log.fatal("[0x%05x] Compilation failed.", func.entry_point); break; } // Clear fake LS std::memset(ls.data() + start / 4, 0, 4 * (size0 - 1)); } if (set_relax_flag) { spu_thread::g_spu_work_count--; set_relax_flag = false; } } }; // SPU LLVM recompiler thread context struct spu_llvm { // Workload lf_queue> registered; atomic_ptr> m_workers; spu_llvm() { // Dependency g_fxo->init(); } void operator()() { if (g_cfg.core.spu_decoder != spu_decoder_type::llvm) { return; } while (!registered && thread_ctrl::state() != thread_state::aborting) { // Wait for the first SPU block before launching any thread thread_ctrl::wait_on(utils::bless>(®istered)[1], 0); } if (thread_ctrl::state() == thread_state::aborting) { return; } // To compile (hash -> item) std::unordered_multimap> enqueued; // Mini-profiler (hash -> number of occurrences) std::unordered_map, value_hash> samples; // For synchronization with profiler thread stx::init_mutex prof_mutex; named_thread profiler("SPU LLVM Profiler"sv, [&]() { while (thread_ctrl::state() != thread_state::aborting) { { // Lock if enabled const auto lock = prof_mutex.access(); if (!lock) { // Wait when the profiler is disabled prof_mutex.wait_for_initialized(); continue; } // Collect profiling samples idm::select>([&](u32 /*id*/, spu_thread& spu) { const u64 name = atomic_storage::load(spu.block_hash); if (auto state = +spu.state; !::is_paused(state) && !::is_stopped(state) && cpu_flag::wait - state) { const auto found = std::as_const(samples).find(name); if (found != std::as_const(samples).end()) { const_cast&>(found->second)++; } } }); } // Sleep for a short period if enabled thread_ctrl::wait_for(20, false); } }); u32 worker_count = 1; if (uint hc = utils::get_thread_count(); hc >= 12) { worker_count = hc - 12 + 3; } else if (hc >= 6) { worker_count = 2; } u32 worker_index = 0; u32 notify_compile_count = 0; u32 compile_pending = 0; std::vector notify_compile(worker_count); m_workers = make_single>("SPUW.", worker_count); auto workers_ptr = m_workers.load(); auto& workers = *workers_ptr; while (thread_ctrl::state() != thread_state::aborting) { for (const auto& pair : registered.pop_all()) { enqueued.emplace(pair); // Interrupt and kick profiler thread const auto lock = prof_mutex.init_always([&]{}); // Register new blocks to collect samples samples.emplace(pair.first, 0); } if (enqueued.empty()) { // Send pending notifications if (notify_compile_count) { for (usz i = 0; i < worker_count; i++) { if (notify_compile[i]) { (workers.begin() + i)->registered.notify(); } } } // Interrupt profiler thread and put it to sleep static_cast(prof_mutex.reset()); thread_ctrl::wait_on(utils::bless>(®istered)[1], 0); std::fill(notify_compile.begin(), notify_compile.end(), 0); // Reset notification flags notify_compile_count = 0; compile_pending = 0; continue; } // Find the most used enqueued item u64 sample_max = 0; auto found_it = enqueued.begin(); for (auto it = enqueued.begin(), end = enqueued.end(); it != end; ++it) { const u64 cur = ::at32(std::as_const(samples), it->first); if (cur > sample_max) { sample_max = cur; found_it = it; } } // Start compiling const spu_program& func = found_it->second->data; // Old function pointer (pre-recompiled) const spu_function_t _old = found_it->second->compiled; // Remove item from the queue enqueued.erase(found_it); // Prefer using an inactive thread for (usz i = 0; i < worker_count && !!(workers.begin() + (worker_index % worker_count))->registered; i++) { worker_index++; } // Push the workload const bool notify = (workers.begin() + (worker_index % worker_count))->registered.template push(reinterpret_cast(_old), &func); if (notify && !notify_compile[worker_index % worker_count]) { notify_compile[worker_index % worker_count] = 1; notify_compile_count++; } compile_pending++; // Notify all before queue runs out if there is considerable excess // Optimized that: if there are many workers, it acts soon // If there are only a few workers, it postpones notifications until there is some more workload if (notify_compile_count && std::min(7, utils::aligned_div(worker_count * 2, 3) + 2) <= compile_pending) { for (usz i = 0; i < worker_count; i++) { if (notify_compile[i]) { (workers.begin() + i)->registered.notify(); } } std::fill(notify_compile.begin(), notify_compile.end(), 0); // Reset notification flags notify_compile_count = 0; compile_pending = 0; } worker_index++; } static_cast(prof_mutex.init_always([&]{ samples.clear(); })); m_workers.reset(); for (u32 i = 0; i < worker_count; i++) { (workers.begin() + i)->operator=(thread_state::aborting); } } spu_llvm& operator=(thread_state) { if (const auto workers = m_workers.load()) { for (u32 i = 0; i < workers->size(); i++) { (workers->begin() + i)->operator=(thread_state::aborting); } } return *this; } static constexpr auto thread_name = "SPU LLVM"sv; }; using spu_llvm_thread = named_thread; struct spu_fast : public spu_recompiler_base { virtual void init() override { if (!m_spurt) { m_spurt = &g_fxo->get(); } } virtual spu_function_t compile(spu_program&& _func) override { const auto add_loc = m_spurt->add_empty(std::move(_func)); if (!add_loc) { return nullptr; } if (add_loc->compiled) { return add_loc->compiled; } const spu_program& func = add_loc->data; if (g_cfg.core.spu_debug && !add_loc->logged.exchange(1)) { std::string log; this->dump(func, log); fs::write_file(m_spurt->get_cache_path() + "spu.log", fs::create + fs::write + fs::append, log); } // Allocate executable area with necessary size const auto result = jit_runtime::alloc(22 + 1 + 9 + ::size32(func.data) * (16 + 16) + 36 + 47, 16); if (!result) { return nullptr; } m_pos = func.lower_bound; m_size = ::size32(func.data) * 4; { sha1_context ctx; u8 output[20]; sha1_starts(&ctx); sha1_update(&ctx, reinterpret_cast(func.data.data()), func.data.size() * 4); sha1_finish(&ctx, output); be_t hash_start; std::memcpy(&hash_start, output, sizeof(hash_start)); m_hash_start = hash_start; } u8* raw = result; // 8-byte intruction for patching (long NOP) *raw++ = 0x0f; *raw++ = 0x1f; *raw++ = 0x84; *raw++ = 0; *raw++ = 0; *raw++ = 0; *raw++ = 0; *raw++ = 0; // mov rax, m_hash_start *raw++ = 0x48; *raw++ = 0xb8; std::memcpy(raw, &m_hash_start, sizeof(m_hash_start)); raw += 8; // Update block_hash: mov [r13 + spu_thread::m_block_hash], rax *raw++ = 0x49; *raw++ = 0x89; *raw++ = 0x45; *raw++ = ::narrow(::offset32(&spu_thread::block_hash)); // Load PC: mov eax, [r13 + spu_thread::pc] *raw++ = 0x41; *raw++ = 0x8b; *raw++ = 0x45; *raw++ = ::narrow(::offset32(&spu_thread::pc)); // Get LS address starting from PC: lea rcx, [rbp + rax] *raw++ = 0x48; *raw++ = 0x8d; *raw++ = 0x4c; *raw++ = 0x05; *raw++ = 0x00; // Verification (slow) for (u32 i = 0; i < func.data.size(); i++) { if (!func.data[i]) { continue; } // cmp dword ptr [rcx + off], opc *raw++ = 0x81; *raw++ = 0xb9; const u32 off = i * 4; const u32 opc = func.data[i]; std::memcpy(raw + 0, &off, 4); std::memcpy(raw + 4, &opc, 4); raw += 8; // jne tr_dispatch const s64 rel = reinterpret_cast(spu_runtime::tr_dispatch) - reinterpret_cast(raw) - 6; *raw++ = 0x0f; *raw++ = 0x85; std::memcpy(raw + 0, &rel, 4); raw += 4; } // trap //*raw++ = 0xcc; // Secondary prologue: sub rsp,0x28 *raw++ = 0x48; *raw++ = 0x83; *raw++ = 0xec; *raw++ = 0x28; // Fix args: xchg r13,rbp *raw++ = 0x49; *raw++ = 0x87; *raw++ = 0xed; // mov r12d, eax *raw++ = 0x41; *raw++ = 0x89; *raw++ = 0xc4; // mov esi, 0x7f0 *raw++ = 0xbe; *raw++ = 0xf0; *raw++ = 0x07; *raw++ = 0x00; *raw++ = 0x00; // lea rdi, [rbp + spu_thread::gpr] *raw++ = 0x48; *raw++ = 0x8d; *raw++ = 0x7d; *raw++ = ::narrow(::offset32(&spu_thread::gpr)); // Save base pc: mov [rbp + spu_thread::base_pc], eax *raw++ = 0x89; *raw++ = 0x45; *raw++ = ::narrow(::offset32(&spu_thread::base_pc)); // inc block_counter *raw++ = 0x48; *raw++ = 0xff; *raw++ = 0x85; const u32 blc_off = ::offset32(&spu_thread::block_counter); std::memcpy(raw, &blc_off, 4); raw += 4; // lea r14, [local epilogue] *raw++ = 0x4c; *raw++ = 0x8d; *raw++ = 0x35; const u32 epi_off = ::size32(func.data) * 16; std::memcpy(raw, &epi_off, 4); raw += 4; // Instructions (each instruction occupies fixed number of bytes) for (u32 i = 0; i < func.data.size(); i++) { const u32 pos = m_pos + i * 4; if (!func.data[i]) { // Save pc: mov [rbp + spu_thread::pc], r12d *raw++ = 0x44; *raw++ = 0x89; *raw++ = 0x65; *raw++ = ::narrow(::offset32(&spu_thread::pc)); // Epilogue: add rsp,0x28 *raw++ = 0x48; *raw++ = 0x83; *raw++ = 0xc4; *raw++ = 0x28; // ret (TODO) *raw++ = 0xc3; std::memset(raw, 0xcc, 16 - 9); raw += 16 - 9; continue; } // Fix endianness const spu_opcode_t op{std::bit_cast>(func.data[i])}; switch (auto type = g_spu_itype.decode(op.opcode)) { case spu_itype::BRZ: case spu_itype::BRHZ: case spu_itype::BRNZ: case spu_itype::BRHNZ: { const u32 target = spu_branch_target(pos, op.i16); if (0 && target >= m_pos && target < m_pos + m_size) { *raw++ = type == spu_itype::BRHZ || type == spu_itype::BRHNZ ? 0x66 : 0x90; *raw++ = 0x83; *raw++ = 0xbd; const u32 off = ::offset32(&spu_thread::gpr, op.rt) + 12; std::memcpy(raw, &off, 4); raw += 4; *raw++ = 0x00; *raw++ = 0x0f; *raw++ = type == spu_itype::BRZ || type == spu_itype::BRHZ ? 0x84 : 0x85; const u32 dif = (target - (pos + 4)) / 4 * 16 + 2; std::memcpy(raw, &dif, 4); raw += 4; *raw++ = 0x66; *raw++ = 0x90; break; } [[fallthrough]]; } default: { // Ballast: mov r15d, pos *raw++ = 0x41; *raw++ = 0xbf; std::memcpy(raw, &pos, 4); raw += 4; // mov ebx, opc *raw++ = 0xbb; std::memcpy(raw, &op, 4); raw += 4; // call spu_* (specially built interpreter function) const s64 rel = spu_runtime::g_interpreter_table[static_cast(type)] - reinterpret_cast(raw) - 5; *raw++ = 0xe8; std::memcpy(raw, &rel, 4); raw += 4; break; } } } // Local dispatcher/epilogue: fix stack after branch instruction, then dispatch or return // add rsp, 8 *raw++ = 0x48; *raw++ = 0x83; *raw++ = 0xc4; *raw++ = 0x08; // and rsp, -16 *raw++ = 0x48; *raw++ = 0x83; *raw++ = 0xe4; *raw++ = 0xf0; // lea rax, [r12 - size] *raw++ = 0x49; *raw++ = 0x8d; *raw++ = 0x84; *raw++ = 0x24; const u32 msz = 0u - m_size; std::memcpy(raw, &msz, 4); raw += 4; // sub eax, [rbp + spu_thread::base_pc] *raw++ = 0x2b; *raw++ = 0x45; *raw++ = ::narrow(::offset32(&spu_thread::base_pc)); // cmp eax, (0 - size) *raw++ = 0x3d; std::memcpy(raw, &msz, 4); raw += 4; // jb epilogue *raw++ = 0x72; *raw++ = +12; // movsxd rax, eax *raw++ = 0x48; *raw++ = 0x63; *raw++ = 0xc0; // shl rax, 2 *raw++ = 0x48; *raw++ = 0xc1; *raw++ = 0xe0; *raw++ = 0x02; // add rax, r14 *raw++ = 0x4c; *raw++ = 0x01; *raw++ = 0xf0; // jmp rax *raw++ = 0xff; *raw++ = 0xe0; // Save pc: mov [rbp + spu_thread::pc], r12d *raw++ = 0x44; *raw++ = 0x89; *raw++ = 0x65; *raw++ = ::narrow(::offset32(&spu_thread::pc)); // Epilogue: add rsp,0x28 ; ret *raw++ = 0x48; *raw++ = 0x83; *raw++ = 0xc4; *raw++ = 0x28; *raw++ = 0xc3; const auto fn = reinterpret_cast(result); // Install pointer carefully const bool added = !add_loc->compiled && add_loc->compiled.compare_and_swap_test(nullptr, fn); // Check hash against allowed bounds const bool inverse_bounds = g_cfg.core.spu_llvm_lower_bound > g_cfg.core.spu_llvm_upper_bound; if ((!inverse_bounds && (m_hash_start < g_cfg.core.spu_llvm_lower_bound || m_hash_start > g_cfg.core.spu_llvm_upper_bound)) || (inverse_bounds && (m_hash_start < g_cfg.core.spu_llvm_lower_bound && m_hash_start > g_cfg.core.spu_llvm_upper_bound))) { spu_log.error("[Debug] Skipped function %s", fmt::base57(be_t{m_hash_start})); } else if (added) { // Send work to LLVM compiler thread g_fxo->get().registered.push(m_hash_start, add_loc); } // Rebuild trampoline if necessary if (!m_spurt->rebuild_ubertrampoline(func.data[0])) { return nullptr; } if (added) { add_loc->compiled.notify_all(); } return fn; } }; std::unique_ptr spu_recompiler_base::make_fast_llvm_recompiler() { return std::make_unique(); } extern std::string format_spu_func_info(u32 addr, cpu_thread* spu) { spu_thread* _spu = static_cast(spu); std::unique_ptr compiler = spu_recompiler_base::make_asmjit_recompiler(); compiler->init(); auto func = compiler->analyse(reinterpret_cast*>(_spu->ls), addr); std::string info; { sha1_context ctx; u8 output[20]; sha1_starts(&ctx); sha1_update(&ctx, reinterpret_cast(func.data.data()), func.data.size() * 4); sha1_finish(&ctx, output); fmt::append(info, "size=%d, end=0x%x, hash=%s", func.data.size(), addr + func.data.size() * 4, fmt::base57(output)); } return info; }