#include "stdafx.h" #include "aes.h" #include "sha1.h" #include "utils.h" #include "unself.h" #include "Emu/VFS.h" #include "Emu/System.h" #include #include inline u8 Read8(const fs::file& f) { u8 ret; f.read(&ret, sizeof(ret)); return ret; } inline u16 Read16(const fs::file& f) { be_t ret; f.read(&ret, sizeof(ret)); return ret; } inline u32 Read32(const fs::file& f) { be_t ret; f.read(&ret, sizeof(ret)); return ret; } inline u64 Read64(const fs::file& f) { be_t ret; f.read(&ret, sizeof(ret)); return ret; } inline u16 Read16LE(const fs::file& f) { u16 ret; f.read(&ret, sizeof(ret)); return ret; } inline u32 Read32LE(const fs::file& f) { u32 ret; f.read(&ret, sizeof(ret)); return ret; } inline u64 Read64LE(const fs::file& f) { u64 ret; f.read(&ret, sizeof(ret)); return ret; } inline void Write8(const fs::file& f, const u8 data) { f.write(&data, sizeof(data)); } inline void Write16LE(const fs::file& f, const u16 data) { f.write(&data, sizeof(data)); } inline void Write32LE(const fs::file& f, const u32 data) { f.write(&data, sizeof(data)); } inline void Write64LE(const fs::file& f, const u64 data) { f.write(&data, sizeof(data)); } inline void Write16(const fs::file& f, const be_t data) { f.write(&data, sizeof(data)); } inline void Write32(const fs::file& f, const be_t data) { f.write(&data, sizeof(data)); } inline void Write64(const fs::file& f, const be_t data) { f.write(&data, sizeof(data)); } void WriteEhdr(const fs::file& f, Elf64_Ehdr& ehdr) { Write32(f, ehdr.e_magic); Write8(f, ehdr.e_class); Write8(f, ehdr.e_data); Write8(f, ehdr.e_curver); Write8(f, ehdr.e_os_abi); Write64(f, ehdr.e_abi_ver); Write16(f, ehdr.e_type); Write16(f, ehdr.e_machine); Write32(f, ehdr.e_version); Write64(f, ehdr.e_entry); Write64(f, ehdr.e_phoff); Write64(f, ehdr.e_shoff); Write32(f, ehdr.e_flags); Write16(f, ehdr.e_ehsize); Write16(f, ehdr.e_phentsize); Write16(f, ehdr.e_phnum); Write16(f, ehdr.e_shentsize); Write16(f, ehdr.e_shnum); Write16(f, ehdr.e_shstrndx); } void WritePhdr(const fs::file& f, Elf64_Phdr& phdr) { Write32(f, phdr.p_type); Write32(f, phdr.p_flags); Write64(f, phdr.p_offset); Write64(f, phdr.p_vaddr); Write64(f, phdr.p_paddr); Write64(f, phdr.p_filesz); Write64(f, phdr.p_memsz); Write64(f, phdr.p_align); } void WriteShdr(const fs::file& f, Elf64_Shdr& shdr) { Write32(f, shdr.sh_name); Write32(f, shdr.sh_type); Write64(f, shdr.sh_flags); Write64(f, shdr.sh_addr); Write64(f, shdr.sh_offset); Write64(f, shdr.sh_size); Write32(f, shdr.sh_link); Write32(f, shdr.sh_info); Write64(f, shdr.sh_addralign); Write64(f, shdr.sh_entsize); } void WriteEhdr(const fs::file& f, Elf32_Ehdr& ehdr) { Write32(f, ehdr.e_magic); Write8(f, ehdr.e_class); Write8(f, ehdr.e_data); Write8(f, ehdr.e_curver); Write8(f, ehdr.e_os_abi); Write64(f, ehdr.e_abi_ver); Write16(f, ehdr.e_type); Write16(f, ehdr.e_machine); Write32(f, ehdr.e_version); Write32(f, ehdr.e_entry); Write32(f, ehdr.e_phoff); Write32(f, ehdr.e_shoff); Write32(f, ehdr.e_flags); Write16(f, ehdr.e_ehsize); Write16(f, ehdr.e_phentsize); Write16(f, ehdr.e_phnum); Write16(f, ehdr.e_shentsize); Write16(f, ehdr.e_shnum); Write16(f, ehdr.e_shstrndx); } void WritePhdr(const fs::file& f, Elf32_Phdr& phdr) { Write32(f, phdr.p_type); Write32(f, phdr.p_offset); Write32(f, phdr.p_vaddr); Write32(f, phdr.p_paddr); Write32(f, phdr.p_filesz); Write32(f, phdr.p_memsz); Write32(f, phdr.p_flags); Write32(f, phdr.p_align); } void WriteShdr(const fs::file& f, Elf32_Shdr& shdr) { Write32(f, shdr.sh_name); Write32(f, shdr.sh_type); Write32(f, shdr.sh_flags); Write32(f, shdr.sh_addr); Write32(f, shdr.sh_offset); Write32(f, shdr.sh_size); Write32(f, shdr.sh_link); Write32(f, shdr.sh_info); Write32(f, shdr.sh_addralign); Write32(f, shdr.sh_entsize); } void AppInfo::Load(const fs::file& f) { authid = Read64(f); vendor_id = Read32(f); self_type = Read32(f); version = Read64(f); padding = Read64(f); } void AppInfo::Show() { LOG_NOTICE(LOADER, "AuthID: 0x%llx", authid); LOG_NOTICE(LOADER, "VendorID: 0x%08x", vendor_id); LOG_NOTICE(LOADER, "SELF type: 0x%08x", self_type); LOG_NOTICE(LOADER, "Version: 0x%llx", version); } void SectionInfo::Load(const fs::file& f) { offset = Read64(f); size = Read64(f); compressed = Read32(f); unknown1 = Read32(f); unknown2 = Read32(f); encrypted = Read32(f); } void SectionInfo::Show() { LOG_NOTICE(LOADER, "Offset: 0x%llx", offset); LOG_NOTICE(LOADER, "Size: 0x%llx", size); LOG_NOTICE(LOADER, "Compressed: 0x%08x", compressed); LOG_NOTICE(LOADER, "Unknown1: 0x%08x", unknown1); LOG_NOTICE(LOADER, "Unknown2: 0x%08x", unknown2); LOG_NOTICE(LOADER, "Encrypted: 0x%08x", encrypted); } void SCEVersionInfo::Load(const fs::file& f) { subheader_type = Read32(f); present = Read32(f); size = Read32(f); unknown = Read32(f); } void SCEVersionInfo::Show() { LOG_NOTICE(LOADER, "Sub-header type: 0x%08x", subheader_type); LOG_NOTICE(LOADER, "Present: 0x%08x", present); LOG_NOTICE(LOADER, "Size: 0x%08x", size); LOG_NOTICE(LOADER, "Unknown: 0x%08x", unknown); } void ControlInfo::Load(const fs::file& f) { type = Read32(f); size = Read32(f); next = Read64(f); if (type == 1) { control_flags.ctrl_flag1 = Read32(f); control_flags.unknown1 = Read32(f); control_flags.unknown2 = Read32(f); control_flags.unknown3 = Read32(f); control_flags.unknown4 = Read32(f); control_flags.unknown5 = Read32(f); control_flags.unknown6 = Read32(f); control_flags.unknown7 = Read32(f); } else if (type == 2) { if (size == 0x30) { f.read(file_digest_30.digest, 20); file_digest_30.unknown = Read64(f); } else if (size == 0x40) { f.read(file_digest_40.digest1, 20); f.read(file_digest_40.digest2, 20); file_digest_40.unknown = Read64(f); } } else if (type == 3) { npdrm.magic = Read32(f); npdrm.unknown1 = Read32(f); npdrm.license = Read32(f); npdrm.type = Read32(f); f.read(npdrm.content_id, 48); f.read(npdrm.digest, 16); f.read(npdrm.invdigest, 16); f.read(npdrm.xordigest, 16); npdrm.unknown2 = Read64(f); npdrm.unknown3 = Read64(f); } } void ControlInfo::Show() { LOG_NOTICE(LOADER, "Type: 0x%08x", type); LOG_NOTICE(LOADER, "Size: 0x%08x", size); LOG_NOTICE(LOADER, "Next: 0x%llx", next); if (type == 1) { LOG_NOTICE(LOADER, "Control flag 1: 0x%08x", control_flags.ctrl_flag1); LOG_NOTICE(LOADER, "Unknown1: 0x%08x", control_flags.unknown1); LOG_NOTICE(LOADER, "Unknown2: 0x%08x", control_flags.unknown2); LOG_NOTICE(LOADER, "Unknown3: 0x%08x", control_flags.unknown3); LOG_NOTICE(LOADER, "Unknown4: 0x%08x", control_flags.unknown4); LOG_NOTICE(LOADER, "Unknown5: 0x%08x", control_flags.unknown5); LOG_NOTICE(LOADER, "Unknown6: 0x%08x", control_flags.unknown6); LOG_NOTICE(LOADER, "Unknown7: 0x%08x", control_flags.unknown7); } else if (type == 2) { if (size == 0x30) { std::string digest_str; for (int i = 0; i < 20; i++) digest_str += fmt::format("%02x", file_digest_30.digest[i]); LOG_NOTICE(LOADER, "Digest: %s", digest_str.c_str()); LOG_NOTICE(LOADER, "Unknown: 0x%llx", file_digest_30.unknown); } else if (size == 0x40) { std::string digest_str1; std::string digest_str2; for (int i = 0; i < 20; i++) { digest_str1 += fmt::format("%02x", file_digest_40.digest1[i]); digest_str2 += fmt::format("%02x", file_digest_40.digest2[i]); } LOG_NOTICE(LOADER, "Digest1: %s", digest_str1.c_str()); LOG_NOTICE(LOADER, "Digest2: %s", digest_str2.c_str()); LOG_NOTICE(LOADER, "Unknown: 0x%llx", file_digest_40.unknown); } } else if (type == 3) { std::string contentid_str; std::string digest_str; std::string invdigest_str; std::string xordigest_str; for (int i = 0; i < 48; i++) contentid_str += fmt::format("%02x", npdrm.content_id[i]); for (int i = 0; i < 16; i++) { digest_str += fmt::format("%02x", npdrm.digest[i]); invdigest_str += fmt::format("%02x", npdrm.invdigest[i]); xordigest_str += fmt::format("%02x", npdrm.xordigest[i]); } LOG_NOTICE(LOADER, "Magic: 0x%08x", npdrm.magic); LOG_NOTICE(LOADER, "Unknown1: 0x%08x", npdrm.unknown1); LOG_NOTICE(LOADER, "License: 0x%08x", npdrm.license); LOG_NOTICE(LOADER, "Type: 0x%08x", npdrm.type); LOG_NOTICE(LOADER, "ContentID: %s", contentid_str.c_str()); LOG_NOTICE(LOADER, "Digest: %s", digest_str.c_str()); LOG_NOTICE(LOADER, "Inverse digest: %s", invdigest_str.c_str()); LOG_NOTICE(LOADER, "XOR digest: %s", xordigest_str.c_str()); LOG_NOTICE(LOADER, "Unknown2: 0x%llx", npdrm.unknown2); LOG_NOTICE(LOADER, "Unknown3: 0x%llx", npdrm.unknown3); } } void MetadataInfo::Load(u8* in) { memcpy(key, in, 0x10); memcpy(key_pad, in + 0x10, 0x10); memcpy(iv, in + 0x20, 0x10); memcpy(iv_pad, in + 0x30, 0x10); } void MetadataInfo::Show() { std::string key_str; std::string key_pad_str; std::string iv_str; std::string iv_pad_str; for (int i = 0; i < 0x10; i++) { key_str += fmt::format("%02x", key[i]); key_pad_str += fmt::format("%02x", key_pad[i]); iv_str += fmt::format("%02x", iv[i]); iv_pad_str += fmt::format("%02x", iv_pad[i]); } LOG_NOTICE(LOADER, "Key: %s", key_str.c_str()); LOG_NOTICE(LOADER, "Key pad: %s", key_pad_str.c_str()); LOG_NOTICE(LOADER, "IV: %s", iv_str.c_str()); LOG_NOTICE(LOADER, "IV pad: %s", iv_pad_str.c_str()); } void MetadataHeader::Load(u8* in) { memcpy(&signature_input_length, in, 8); memcpy(&unknown1, in + 8, 4); memcpy(§ion_count, in + 12, 4); memcpy(&key_count, in + 16, 4); memcpy(&opt_header_size, in + 20, 4); memcpy(&unknown2, in + 24, 4); memcpy(&unknown3, in + 28, 4); // Endian swap. signature_input_length = swap64(signature_input_length); unknown1 = swap32(unknown1); section_count = swap32(section_count); key_count = swap32(key_count); opt_header_size = swap32(opt_header_size); unknown2 = swap32(unknown2); unknown3 = swap32(unknown3); } void MetadataHeader::Show() { LOG_NOTICE(LOADER, "Signature input length: 0x%llx", signature_input_length); LOG_NOTICE(LOADER, "Unknown1: 0x%08x", unknown1); LOG_NOTICE(LOADER, "Section count: 0x%08x", section_count); LOG_NOTICE(LOADER, "Key count: 0x%08x", key_count); LOG_NOTICE(LOADER, "Optional header size: 0x%08x", opt_header_size); LOG_NOTICE(LOADER, "Unknown2: 0x%08x", unknown2); LOG_NOTICE(LOADER, "Unknown3: 0x%08x", unknown3); } void MetadataSectionHeader::Load(u8* in) { memcpy(&data_offset, in, 8); memcpy(&data_size, in + 8, 8); memcpy(&type, in + 16, 4); memcpy(&program_idx, in + 20, 4); memcpy(&hashed, in + 24, 4); memcpy(&sha1_idx, in + 28, 4); memcpy(&encrypted, in + 32, 4); memcpy(&key_idx, in + 36, 4); memcpy(&iv_idx, in + 40, 4); memcpy(&compressed, in + 44, 4); // Endian swap. data_offset = swap64(data_offset); data_size = swap64(data_size); type = swap32(type); program_idx = swap32(program_idx); hashed = swap32(hashed); sha1_idx = swap32(sha1_idx); encrypted = swap32(encrypted); key_idx = swap32(key_idx); iv_idx = swap32(iv_idx); compressed = swap32(compressed); } void MetadataSectionHeader::Show() { LOG_NOTICE(LOADER, "Data offset: 0x%llx", data_offset); LOG_NOTICE(LOADER, "Data size: 0x%llx", data_size); LOG_NOTICE(LOADER, "Type: 0x%08x", type); LOG_NOTICE(LOADER, "Program index: 0x%08x", program_idx); LOG_NOTICE(LOADER, "Hashed: 0x%08x", hashed); LOG_NOTICE(LOADER, "SHA1 index: 0x%08x", sha1_idx); LOG_NOTICE(LOADER, "Encrypted: 0x%08x", encrypted); LOG_NOTICE(LOADER, "Key index: 0x%08x", key_idx); LOG_NOTICE(LOADER, "IV index: 0x%08x", iv_idx); LOG_NOTICE(LOADER, "Compressed: 0x%08x", compressed); } void SectionHash::Load(const fs::file& f) { f.read(sha1, 20); f.read(padding, 12); f.read(hmac_key, 64); } void CapabilitiesInfo::Load(const fs::file& f) { type = Read32(f); capabilities_size = Read32(f); next = Read32(f); unknown1 = Read32(f); unknown2 = Read64(f); unknown3 = Read64(f); flags = Read64(f); unknown4 = Read32(f); unknown5 = Read32(f); } void Signature::Load(const fs::file& f) { f.read(r, 21); f.read(s, 21); f.read(padding, 6); } void SelfSection::Load(const fs::file& f) { *data = Read32(f); size = Read64(f); offset = Read64(f); } void Elf32_Ehdr::Load(const fs::file& f) { e_magic = Read32(f); e_class = Read8(f); e_data = Read8(f); e_curver = Read8(f); e_os_abi = Read8(f); if (IsLittleEndian()) { e_abi_ver = Read64LE(f); e_type = Read16LE(f); e_machine = Read16LE(f); e_version = Read32LE(f); e_entry = Read32LE(f); e_phoff = Read32LE(f); e_shoff = Read32LE(f); e_flags = Read32LE(f); e_ehsize = Read16LE(f); e_phentsize = Read16LE(f); e_phnum = Read16LE(f); e_shentsize = Read16LE(f); e_shnum = Read16LE(f); e_shstrndx = Read16LE(f); } else { e_abi_ver = Read64(f); e_type = Read16(f); e_machine = Read16(f); e_version = Read32(f); e_entry = Read32(f); e_phoff = Read32(f); e_shoff = Read32(f); e_flags = Read32(f); e_ehsize = Read16(f); e_phentsize = Read16(f); e_phnum = Read16(f); e_shentsize = Read16(f); e_shnum = Read16(f); e_shstrndx = Read16(f); } } void Elf32_Shdr::Load(const fs::file& f) { sh_name = Read32(f); sh_type = Read32(f); sh_flags = Read32(f); sh_addr = Read32(f); sh_offset = Read32(f); sh_size = Read32(f); sh_link = Read32(f); sh_info = Read32(f); sh_addralign = Read32(f); sh_entsize = Read32(f); } void Elf32_Shdr::LoadLE(const fs::file& f) { f.read(this, sizeof(*this)); } void Elf32_Phdr::Load(const fs::file& f) { p_type = Read32(f); p_offset = Read32(f); p_vaddr = Read32(f); p_paddr = Read32(f); p_filesz = Read32(f); p_memsz = Read32(f); p_flags = Read32(f); p_align = Read32(f); } void Elf32_Phdr::LoadLE(const fs::file& f) { f.read(this, sizeof(*this)); } void Elf64_Ehdr::Load(const fs::file& f) { e_magic = Read32(f); e_class = Read8(f); e_data = Read8(f); e_curver = Read8(f); e_os_abi = Read8(f); e_abi_ver = Read64(f); e_type = Read16(f); e_machine = Read16(f); e_version = Read32(f); e_entry = Read64(f); e_phoff = Read64(f); e_shoff = Read64(f); e_flags = Read32(f); e_ehsize = Read16(f); e_phentsize = Read16(f); e_phnum = Read16(f); e_shentsize = Read16(f); e_shnum = Read16(f); e_shstrndx = Read16(f); } void Elf64_Shdr::Load(const fs::file& f) { sh_name = Read32(f); sh_type = Read32(f); sh_flags = Read64(f); sh_addr = Read64(f); sh_offset = Read64(f); sh_size = Read64(f); sh_link = Read32(f); sh_info = Read32(f); sh_addralign = Read64(f); sh_entsize = Read64(f); } void Elf64_Phdr::Load(const fs::file& f) { p_type = Read32(f); p_flags = Read32(f); p_offset = Read64(f); p_vaddr = Read64(f); p_paddr = Read64(f); p_filesz = Read64(f); p_memsz = Read64(f); p_align = Read64(f); } void SceHeader::Load(const fs::file& f) { se_magic = Read32(f); se_hver = Read32(f); se_flags = Read16(f); se_type = Read16(f); se_meta = Read32(f); se_hsize = Read64(f); se_esize = Read64(f); } void SelfHeader::Load(const fs::file& f) { se_htype = Read64(f); se_appinfooff = Read64(f); se_elfoff = Read64(f); se_phdroff = Read64(f); se_shdroff = Read64(f); se_secinfoff = Read64(f); se_sceveroff = Read64(f); se_controloff = Read64(f); se_controlsize = Read64(f); pad = Read64(f); } SCEDecrypter::SCEDecrypter(const fs::file& s) : sce_f(s) , data_buf_length(0) { } bool SCEDecrypter::LoadHeaders() { // Read SCE header. sce_f.seek(0); sce_hdr.Load(sce_f); // Check SCE magic. if (!sce_hdr.CheckMagic()) { LOG_ERROR(LOADER, "SELF: Not a SELF file!"); return false; } return true; } bool SCEDecrypter::LoadMetadata(const u8 erk[32], const u8 riv[16]) { aes_context aes; const auto metadata_info = std::make_unique(sizeof(meta_info)); const auto metadata_headers_size = sce_hdr.se_hsize - (sizeof(sce_hdr) + sce_hdr.se_meta + sizeof(meta_info)); const auto metadata_headers = std::make_unique(metadata_headers_size); // Locate and read the encrypted metadata info. sce_f.seek(sce_hdr.se_meta + sizeof(sce_hdr)); sce_f.read(metadata_info.get(), sizeof(meta_info)); // Locate and read the encrypted metadata header and section header. sce_f.seek(sce_hdr.se_meta + sizeof(sce_hdr) + sizeof(meta_info)); sce_f.read(metadata_headers.get(), metadata_headers_size); // Copy the necessary parameters. u8 metadata_key[0x20]; u8 metadata_iv[0x10]; memcpy(metadata_key, erk, 0x20); memcpy(metadata_iv, riv, 0x10); // Check DEBUG flag. if ((sce_hdr.se_flags & 0x8000) != 0x8000) { // Decrypt the metadata info. aes_setkey_dec(&aes, metadata_key, 256); // AES-256 aes_crypt_cbc(&aes, AES_DECRYPT, sizeof(meta_info), metadata_iv, metadata_info.get(), metadata_info.get()); } // Load the metadata info. meta_info.Load(metadata_info.get()); // If the padding is not NULL for the key or iv fields, the metadata info // is not properly decrypted. if ((meta_info.key_pad[0] != 0x00) || (meta_info.iv_pad[0] != 0x00)) { LOG_ERROR(LOADER, "SELF: Failed to decrypt metadata info!"); return false; } // Perform AES-CTR encryption on the metadata headers. size_t ctr_nc_off = 0; u8 ctr_stream_block[0x10]; aes_setkey_enc(&aes, meta_info.key, 128); aes_crypt_ctr(&aes, metadata_headers_size, &ctr_nc_off, meta_info.iv, ctr_stream_block, metadata_headers.get(), metadata_headers.get()); // Load the metadata header. meta_hdr.Load(metadata_headers.get()); // Load the metadata section headers. meta_shdr.clear(); for (unsigned int i = 0; i < meta_hdr.section_count; i++) { meta_shdr.emplace_back(); meta_shdr.back().Load(metadata_headers.get() + sizeof(meta_hdr) + sizeof(MetadataSectionHeader) * i); } // Copy the decrypted data keys. data_keys_length = meta_hdr.key_count * 0x10; data_keys = std::make_unique(data_keys_length); memcpy(data_keys.get(), metadata_headers.get() + sizeof(meta_hdr) + meta_hdr.section_count * sizeof(MetadataSectionHeader), data_keys_length); return true; } bool SCEDecrypter::DecryptData() { aes_context aes; // Calculate the total data size. for (unsigned int i = 0; i < meta_hdr.section_count; i++) { data_buf_length += meta_shdr[i].data_size; } // Allocate a buffer to store decrypted data. data_buf = std::make_unique(data_buf_length); // Set initial offset. u32 data_buf_offset = 0; // Parse the metadata section headers to find the offsets of encrypted data. for (unsigned int i = 0; i < meta_hdr.section_count; i++) { size_t ctr_nc_off = 0; u8 ctr_stream_block[0x10]; u8 data_key[0x10]; u8 data_iv[0x10]; // Check if this is an encrypted section. if (meta_shdr[i].encrypted == 3) { // Make sure the key and iv are not out of boundaries. if ((meta_shdr[i].key_idx <= meta_hdr.key_count - 1) && (meta_shdr[i].iv_idx <= meta_hdr.key_count)) { // Get the key and iv from the previously stored key buffer. memcpy(data_key, data_keys.get() + meta_shdr[i].key_idx * 0x10, 0x10); memcpy(data_iv, data_keys.get() + meta_shdr[i].iv_idx * 0x10, 0x10); // Allocate a buffer to hold the data. auto buf = std::make_unique(meta_shdr[i].data_size); // Seek to the section data offset and read the encrypted data. sce_f.seek(meta_shdr[i].data_offset); sce_f.read(buf.get(), meta_shdr[i].data_size); // Zero out our ctr nonce. memset(ctr_stream_block, 0, sizeof(ctr_stream_block)); // Perform AES-CTR encryption on the data blocks. aes_setkey_enc(&aes, data_key, 128); aes_crypt_ctr(&aes, meta_shdr[i].data_size, &ctr_nc_off, data_iv, ctr_stream_block, buf.get(), buf.get()); // Copy the decrypted data. memcpy(data_buf.get() + data_buf_offset, buf.get(), meta_shdr[i].data_size); } } else { auto buf = std::make_unique(meta_shdr[i].data_size); sce_f.seek(meta_shdr[i].data_offset); sce_f.read(buf.get(), meta_shdr[i].data_size); memcpy(data_buf.get() + data_buf_offset, buf.get(), meta_shdr[i].data_size); } // Advance the buffer's offset. data_buf_offset += meta_shdr[i].data_size; } return true; } // Each section gets put into its own file. std::vector SCEDecrypter::MakeFile() { std::vector vec; // Set initial offset. u32 data_buf_offset = 0; // Write data. for (unsigned int i = 0; i < meta_hdr.section_count; i++) { fs::file out_f = fs::make_stream>(); bool isValid = true; // Decompress if necessary. if (meta_shdr[i].compressed == 2) { const size_t BUFSIZE = 32 * 1024; u8 tempbuf[BUFSIZE]; z_stream strm; strm.zalloc = Z_NULL; strm.zfree = Z_NULL; strm.opaque = Z_NULL; strm.avail_in = meta_shdr[i].data_size; strm.avail_out = BUFSIZE; strm.next_in = data_buf.get()+data_buf_offset; strm.next_out = tempbuf; int ret = inflateInit(&strm); while (strm.avail_in) { ret = inflate(&strm, Z_NO_FLUSH); if (ret == Z_STREAM_END) break; if (ret != Z_OK) isValid = false; if (!strm.avail_out) { out_f.write(tempbuf, BUFSIZE); strm.next_out = tempbuf; strm.avail_out = BUFSIZE; } else break; } int inflate_res = Z_OK; inflate_res = inflate(&strm, Z_FINISH); if (inflate_res != Z_STREAM_END) isValid = false; out_f.write(tempbuf, BUFSIZE - strm.avail_out); inflateEnd(&strm); } else { // Write the data. out_f.write(data_buf.get()+data_buf_offset, meta_shdr[i].data_size); } // Advance the data buffer offset by data size. data_buf_offset += meta_shdr[i].data_size; if (out_f.pos() != out_f.size()) fmt::throw_exception("MakeELF written bytes (%llu) does not equal buffer size (%llu).", out_f.pos(), out_f.size()); if (isValid) vec.push_back(std::move(out_f)); } return vec; } SELFDecrypter::SELFDecrypter(const fs::file& s) : self_f(s) , key_v() , data_buf_length(0) { } bool SELFDecrypter::LoadHeaders(bool isElf32, SelfAdditionalInfo* out_info) { // Read SCE header. self_f.seek(0); sce_hdr.Load(self_f); if (out_info) { out_info->valid = false; } // Check SCE magic. if (!sce_hdr.CheckMagic()) { LOG_ERROR(LOADER, "SELF: Not a SELF file!"); return false; } // Read SELF header. self_hdr.Load(self_f); // Read the APP INFO. self_f.seek(self_hdr.se_appinfooff); app_info.Load(self_f); if (out_info) { out_info->app_info = app_info; } // Read ELF header. self_f.seek(self_hdr.se_elfoff); if (isElf32) elf32_hdr.Load(self_f); else elf64_hdr.Load(self_f); // Read ELF program headers. if (isElf32) { phdr32_arr.clear(); if(elf32_hdr.e_phoff == 0 && elf32_hdr.e_phnum) { LOG_ERROR(LOADER, "SELF: ELF program header offset is null!"); return false; } self_f.seek(self_hdr.se_phdroff); for(u32 i = 0; i < elf32_hdr.e_phnum; ++i) { phdr32_arr.emplace_back(); phdr32_arr.back().Load(self_f); } } else { phdr64_arr.clear(); if (elf64_hdr.e_phoff == 0 && elf64_hdr.e_phnum) { LOG_ERROR(LOADER, "SELF: ELF program header offset is null!"); return false; } self_f.seek(self_hdr.se_phdroff); for (u32 i = 0; i < elf64_hdr.e_phnum; ++i) { phdr64_arr.emplace_back(); phdr64_arr.back().Load(self_f); } } // Read section info. secinfo_arr.clear(); self_f.seek(self_hdr.se_secinfoff); for(u32 i = 0; i < ((isElf32) ? elf32_hdr.e_phnum : elf64_hdr.e_phnum); ++i) { secinfo_arr.emplace_back(); secinfo_arr.back().Load(self_f); } // Read SCE version info. self_f.seek(self_hdr.se_sceveroff); scev_info.Load(self_f); // Read control info. ctrlinfo_arr.clear(); self_f.seek(self_hdr.se_controloff); for (u64 i = 0; i < self_hdr.se_controlsize;) { ctrlinfo_arr.emplace_back(); ControlInfo &cinfo = ctrlinfo_arr.back(); cinfo.Load(self_f); i += cinfo.size; } if (out_info) { out_info->ctrl_info = ctrlinfo_arr; } // Read ELF section headers. if (isElf32) { shdr32_arr.clear(); if (elf32_hdr.e_shoff == 0 && elf32_hdr.e_shnum) { LOG_WARNING(LOADER, "SELF: ELF section header offset is null!"); return true; } self_f.seek(self_hdr.se_shdroff); for(u32 i = 0; i < elf32_hdr.e_shnum; ++i) { shdr32_arr.emplace_back(); shdr32_arr.back().Load(self_f); } } else { shdr64_arr.clear(); if (elf64_hdr.e_shoff == 0 && elf64_hdr.e_shnum) { LOG_WARNING(LOADER, "SELF: ELF section header offset is null!"); return true; } self_f.seek(self_hdr.se_shdroff); for(u32 i = 0; i < elf64_hdr.e_shnum; ++i) { shdr64_arr.emplace_back(); shdr64_arr.back().Load(self_f); } } if (out_info) { out_info->valid = true; } return true; } void SELFDecrypter::ShowHeaders(bool isElf32) { LOG_NOTICE(LOADER, "SCE header"); LOG_NOTICE(LOADER, "----------------------------------------------------"); sce_hdr.Show(); LOG_NOTICE(LOADER, "----------------------------------------------------"); LOG_NOTICE(LOADER, "SELF header"); LOG_NOTICE(LOADER, "----------------------------------------------------"); self_hdr.Show(); LOG_NOTICE(LOADER, "----------------------------------------------------"); LOG_NOTICE(LOADER, "APP INFO"); LOG_NOTICE(LOADER, "----------------------------------------------------"); app_info.Show(); LOG_NOTICE(LOADER, "----------------------------------------------------"); LOG_NOTICE(LOADER, "ELF header"); LOG_NOTICE(LOADER, "----------------------------------------------------"); isElf32 ? elf32_hdr.Show() : elf64_hdr.Show(); LOG_NOTICE(LOADER, "----------------------------------------------------"); LOG_NOTICE(LOADER, "ELF program headers"); LOG_NOTICE(LOADER, "----------------------------------------------------"); for(unsigned int i = 0; i < ((isElf32) ? phdr32_arr.size() : phdr64_arr.size()); i++) isElf32 ? phdr32_arr[i].Show() : phdr64_arr[i].Show(); LOG_NOTICE(LOADER, "----------------------------------------------------"); LOG_NOTICE(LOADER, "Section info"); LOG_NOTICE(LOADER, "----------------------------------------------------"); for(unsigned int i = 0; i < secinfo_arr.size(); i++) secinfo_arr[i].Show(); LOG_NOTICE(LOADER, "----------------------------------------------------"); LOG_NOTICE(LOADER, "SCE version info"); LOG_NOTICE(LOADER, "----------------------------------------------------"); scev_info.Show(); LOG_NOTICE(LOADER, "----------------------------------------------------"); LOG_NOTICE(LOADER, "Control info"); LOG_NOTICE(LOADER, "----------------------------------------------------"); for(unsigned int i = 0; i < ctrlinfo_arr.size(); i++) ctrlinfo_arr[i].Show(); LOG_NOTICE(LOADER, "----------------------------------------------------"); LOG_NOTICE(LOADER, "ELF section headers"); LOG_NOTICE(LOADER, "----------------------------------------------------"); for(unsigned int i = 0; i < ((isElf32) ? shdr32_arr.size() : shdr64_arr.size()); i++) isElf32 ? shdr32_arr[i].Show() : shdr64_arr[i].Show(); LOG_NOTICE(LOADER, "----------------------------------------------------"); } bool SELFDecrypter::DecryptNPDRM(u8 *metadata, u32 metadata_size) { aes_context aes; ControlInfo *ctrl = NULL; u8 npdrm_key[0x10]; u8 npdrm_iv[0x10]; // Parse the control info structures to find the NPDRM control info. for(unsigned int i = 0; i < ctrlinfo_arr.size(); i++) { if (ctrlinfo_arr[i].type == 3) { ctrl = &ctrlinfo_arr[i]; break; } } // Check if we have a valid NPDRM control info structure. // If not, the data has no NPDRM layer. if (!ctrl) { LOG_TRACE(LOADER, "SELF: No NPDRM control info found!"); return true; } if (ctrl->npdrm.license == 1) // Network license. { LOG_ERROR(LOADER, "SELF: Can't decrypt network NPDRM!"); return false; } else if (ctrl->npdrm.license == 2) // Local license. { // Try to find a RAP file to get the key. if (!GetKeyFromRap(ctrl->npdrm.content_id, npdrm_key)) { LOG_ERROR(LOADER, "SELF: Can't find RAP file for NPDRM decryption!"); return false; } } else if (ctrl->npdrm.license == 3) // Free license. { // Use klicensee if available. if (key_v.GetKlicenseeKey() != nullptr) memcpy(npdrm_key, key_v.GetKlicenseeKey(), 0x10); else memcpy(npdrm_key, NP_KLIC_FREE, 0x10); } else { LOG_ERROR(LOADER, "SELF: Invalid NPDRM license type!"); return false; } // Decrypt our key with NP_KLIC_KEY. aes_setkey_dec(&aes, NP_KLIC_KEY, 128); aes_crypt_ecb(&aes, AES_DECRYPT, npdrm_key, npdrm_key); // IV is empty. memset(npdrm_iv, 0, 0x10); // Use our final key to decrypt the NPDRM layer. aes_setkey_dec(&aes, npdrm_key, 128); aes_crypt_cbc(&aes, AES_DECRYPT, metadata_size, npdrm_iv, metadata, metadata); return true; } bool SELFDecrypter::LoadMetadata(u8* klic_key) { aes_context aes; const auto metadata_info = std::make_unique(sizeof(meta_info)); const auto metadata_headers_size = sce_hdr.se_hsize - (sizeof(sce_hdr) + sce_hdr.se_meta + sizeof(meta_info)); const auto metadata_headers = std::make_unique(metadata_headers_size); // Locate and read the encrypted metadata info. self_f.seek(sce_hdr.se_meta + sizeof(sce_hdr)); self_f.read(metadata_info.get(), sizeof(meta_info)); // Locate and read the encrypted metadata header and section header. self_f.seek(sce_hdr.se_meta + sizeof(sce_hdr) + sizeof(meta_info)); self_f.read(metadata_headers.get(), metadata_headers_size); // Find the right keyset from the key vault. SELF_KEY keyset = key_v.FindSelfKey(app_info.self_type, sce_hdr.se_flags, app_info.version); // Set klic if given if (klic_key) key_v.SetKlicenseeKey(klic_key); // Copy the necessary parameters. u8 metadata_key[0x20]; u8 metadata_iv[0x10]; memcpy(metadata_key, keyset.erk, 0x20); memcpy(metadata_iv, keyset.riv, 0x10); // Check DEBUG flag. if ((sce_hdr.se_flags & 0x8000) != 0x8000) { // Decrypt the NPDRM layer. if (!DecryptNPDRM(metadata_info.get(), sizeof(meta_info))) return false; // Decrypt the metadata info. aes_setkey_dec(&aes, metadata_key, 256); // AES-256 aes_crypt_cbc(&aes, AES_DECRYPT, sizeof(meta_info), metadata_iv, metadata_info.get(), metadata_info.get()); } // Load the metadata info. meta_info.Load(metadata_info.get()); // If the padding is not NULL for the key or iv fields, the metadata info // is not properly decrypted. if ((meta_info.key_pad[0] != 0x00) || (meta_info.iv_pad[0] != 0x00)) { LOG_ERROR(LOADER, "SELF: Failed to decrypt metadata info!"); return false; } // Perform AES-CTR encryption on the metadata headers. size_t ctr_nc_off = 0; u8 ctr_stream_block[0x10]; aes_setkey_enc(&aes, meta_info.key, 128); aes_crypt_ctr(&aes, metadata_headers_size, &ctr_nc_off, meta_info.iv, ctr_stream_block, metadata_headers.get(), metadata_headers.get()); // Load the metadata header. meta_hdr.Load(metadata_headers.get()); // Load the metadata section headers. meta_shdr.clear(); for (unsigned int i = 0; i < meta_hdr.section_count; i++) { meta_shdr.emplace_back(); meta_shdr.back().Load(metadata_headers.get() + sizeof(meta_hdr) + sizeof(MetadataSectionHeader) * i); } // Copy the decrypted data keys. data_keys_length = meta_hdr.key_count * 0x10; data_keys = std::make_unique(data_keys_length); memcpy(data_keys.get(), metadata_headers.get() + sizeof(meta_hdr) + meta_hdr.section_count * sizeof(MetadataSectionHeader), data_keys_length); return true; } bool SELFDecrypter::DecryptData() { aes_context aes; // Calculate the total data size. for (unsigned int i = 0; i < meta_hdr.section_count; i++) { if (meta_shdr[i].encrypted == 3) { if ((meta_shdr[i].key_idx <= meta_hdr.key_count - 1) && (meta_shdr[i].iv_idx <= meta_hdr.key_count)) data_buf_length += meta_shdr[i].data_size; } } // Allocate a buffer to store decrypted data. data_buf = std::make_unique(data_buf_length); // Set initial offset. u32 data_buf_offset = 0; // Parse the metadata section headers to find the offsets of encrypted data. for (unsigned int i = 0; i < meta_hdr.section_count; i++) { size_t ctr_nc_off = 0; u8 ctr_stream_block[0x10]; u8 data_key[0x10]; u8 data_iv[0x10]; // Check if this is an encrypted section. if (meta_shdr[i].encrypted == 3) { // Make sure the key and iv are not out of boundaries. if((meta_shdr[i].key_idx <= meta_hdr.key_count - 1) && (meta_shdr[i].iv_idx <= meta_hdr.key_count)) { // Get the key and iv from the previously stored key buffer. memcpy(data_key, data_keys.get() + meta_shdr[i].key_idx * 0x10, 0x10); memcpy(data_iv, data_keys.get() + meta_shdr[i].iv_idx * 0x10, 0x10); // Allocate a buffer to hold the data. auto buf = std::make_unique(meta_shdr[i].data_size); // Seek to the section data offset and read the encrypted data. self_f.seek(meta_shdr[i].data_offset); self_f.read(buf.get(), meta_shdr[i].data_size); // Zero out our ctr nonce. memset(ctr_stream_block, 0, sizeof(ctr_stream_block)); // Perform AES-CTR encryption on the data blocks. aes_setkey_enc(&aes, data_key, 128); aes_crypt_ctr(&aes, meta_shdr[i].data_size, &ctr_nc_off, data_iv, ctr_stream_block, buf.get(), buf.get()); // Copy the decrypted data. memcpy(data_buf.get() + data_buf_offset, buf.get(), meta_shdr[i].data_size); // Advance the buffer's offset. data_buf_offset += meta_shdr[i].data_size; } } } return true; } fs::file SELFDecrypter::MakeElf(bool isElf32) { // Create a new ELF file. fs::file e = fs::make_stream>(); if (isElf32) { WriteElf(e, elf32_hdr, shdr32_arr, phdr32_arr); } else { WriteElf(e, elf64_hdr, shdr64_arr, phdr64_arr); } return e; } bool SELFDecrypter::GetKeyFromRap(u8* content_id, u8* npdrm_key) { // Set empty RAP key. u8 rap_key[0x10]; memset(rap_key, 0, 0x10); // Try to find a matching RAP file under exdata folder. const std::string ci_str = reinterpret_cast(content_id); const std::string rap_path = Emulator::GetHddDir() + "/home/" + Emu.GetUsr() + "/exdata/" + ci_str + ".rap"; // Open the RAP file and read the key. const fs::file rap_file(rap_path); if (!rap_file) { LOG_FATAL(LOADER, "Failed to locate the game license file: %s." "\nEnsure the .rap license file is placed in the dev_hdd0/home/00000001/exdata folder with a lowercase file extension." "\nIf you need assistance on dumping the license file from your PS3, read our quickstart guide: https://rpcs3.net/quickstart", rap_path); return false; } LOG_NOTICE(LOADER, "Loading RAP file %s.rap", ci_str); rap_file.read(rap_key, 0x10); // Convert the RAP key. rap_to_rif(rap_key, npdrm_key); return true; } static bool IsSelfElf32(const fs::file& f) { if (!f) return false; f.seek(0); SceHeader hdr; SelfHeader sh; hdr.Load(f); sh.Load(f); // Locate the class byte and check it. u8 elf_class[0x8]; f.seek(sh.se_elfoff); f.read(elf_class, 0x8); return (elf_class[4] == 1); } static bool CheckDebugSelf(fs::file& s) { if (s.size() < 0x18) { return false; } // Get the key version. s.seek(0x08); const u16 key_version = s.read>(); // Check for DEBUG version. if (key_version == 0x80 || key_version == 0xc0) { LOG_WARNING(LOADER, "Debug SELF detected! Removing fake header..."); // Get the real elf offset. s.seek(0x10); // Start at the real elf offset. s.seek(key_version == 0x80 ? +s.read>() : +s.read>()); // Write the real ELF file back. fs::file e = fs::make_stream>(); // Copy the data. char buf[2048]; while (u64 size = s.read(buf, 2048)) { e.write(buf, size); } s = std::move(e); return true; } // Leave the file untouched. return false; } fs::file decrypt_self(fs::file elf_or_self, u8* klic_key, SelfAdditionalInfo* out_info) { if (out_info) { out_info->valid = false; } if (!elf_or_self) { return fs::file{}; } elf_or_self.seek(0); // Check SELF header first. Check for a debug SELF. if (elf_or_self.size() >= 4 && elf_or_self.read() == "SCE\0"_u32 && !CheckDebugSelf(elf_or_self)) { // Check the ELF file class (32 or 64 bit). bool isElf32 = IsSelfElf32(elf_or_self); // Start the decrypter on this SELF file. SELFDecrypter self_dec(elf_or_self); // Load the SELF file headers. if (!self_dec.LoadHeaders(isElf32, out_info)) { LOG_ERROR(LOADER, "SELF: Failed to load SELF file headers!"); return fs::file{}; } // Load and decrypt the SELF file metadata. if (!self_dec.LoadMetadata(klic_key)) { LOG_ERROR(LOADER, "SELF: Failed to load SELF file metadata!"); return fs::file{}; } // Decrypt the SELF file data. if (!self_dec.DecryptData()) { LOG_ERROR(LOADER, "SELF: Failed to decrypt SELF file data!"); return fs::file{}; } // Make a new ELF file from this SELF. return self_dec.MakeElf(isElf32); } return elf_or_self; } bool verify_npdrm_self_headers(const fs::file& self, u8* klic_key) { if (!self) return false; self.seek(0); if (self.size() >= 4 && self.read() == "SCE\0"_u32) { // Check the ELF file class (32 or 64 bit). bool isElf32 = IsSelfElf32(self); // Start the decrypter on this SELF file. SELFDecrypter self_dec(self); // Load the SELF file headers. if (!self_dec.LoadHeaders(isElf32)) { LOG_ERROR(LOADER, "SELF: Failed to load SELF file headers!"); return false; } // Load and decrypt the SELF file metadata. if (!self_dec.LoadMetadata(klic_key)) { LOG_ERROR(LOADER, "SELF: Failed to load SELF file metadata!"); return false; } } return true; } std::array get_default_self_klic() { std::array key; std::copy(std::begin(NP_KLIC_FREE), std::end(NP_KLIC_FREE), std::begin(key)); return key; }