#include "stdafx.h" #include "Emu/Memory/Memory.h" #include "Emu/System.h" #include "Emu/IdManager.h" #include "Emu/SysCalls/SysCalls.h" #include "Emu/CPU/CPUThreadManager.h" #include "Emu/Cell/RawSPUThread.h" #include "Emu/FS/vfsStreamMemory.h" #include "Emu/FS/vfsFile.h" #include "Loader/ELF32.h" #include "Crypto/unself.h" #include "sys_interrupt.h" #include "sys_event.h" #include "sys_spu.h" SysCallBase sys_spu("sys_spu"); void LoadSpuImage(vfsStream& stream, u32& spu_ep, u32 addr) { loader::handlers::elf32 h; h.init(stream); h.load_data(addr); spu_ep = h.m_ehdr.data_be.e_entry; } u32 LoadSpuImage(vfsStream& stream, u32& spu_ep) { const u32 alloc_size = 256 * 1024; u32 spu_offset = (u32)vm::alloc(alloc_size, vm::main); LoadSpuImage(stream, spu_ep, spu_offset); return spu_offset; } s32 spu_image_import(sys_spu_image& img, u32 src, u32 type) { vfsStreamMemory f(src); u32 entry; u32 offset = LoadSpuImage(f, entry); img.type = SYS_SPU_IMAGE_TYPE_USER; img.entry_point = entry; img.addr = offset; // TODO: writing actual segment info img.nsegs = 1; // wrong value return CELL_OK; } s32 sys_spu_initialize(u32 max_usable_spu, u32 max_raw_spu) { sys_spu.Warning("sys_spu_initialize(max_usable_spu=%d, max_raw_spu=%d)", max_usable_spu, max_raw_spu); if (max_raw_spu > 5) { return CELL_EINVAL; } return CELL_OK; } s32 sys_spu_image_open(vm::ptr img, vm::cptr path) { sys_spu.Warning("sys_spu_image_open(img=*0x%x, path=*0x%x)", img, path); vfsFile f(path.get_ptr()); if(!f.IsOpened()) { sys_spu.Error("sys_spu_image_open error: '%s' not found!", path.get_ptr()); return CELL_ENOENT; } SceHeader hdr; hdr.Load(f); if (hdr.CheckMagic()) { sys_spu.Error("sys_spu_image_open error: '%s' is encrypted! Decrypt SELF and try again.", path.get_ptr()); Emu.Pause(); return CELL_ENOENT; } f.Seek(0); u32 entry; u32 offset = LoadSpuImage(f, entry); img->type = SYS_SPU_IMAGE_TYPE_USER; img->entry_point = entry; img->addr = offset; // TODO: writing actual segment info img->nsegs = 1; // wrong value return CELL_OK; } u32 spu_thread_initialize(u32 group_id, u32 spu_num, vm::ptr img, const std::string& name, u32 option, u64 a1, u64 a2, u64 a3, u64 a4, std::function task = nullptr) { if (option) { sys_spu.Error("Unsupported SPU Thread options (0x%x)", option); } const auto spu = idm::make_ptr(name, spu_num); spu->custom_task = task; const auto group = idm::get(group_id); spu->tg = group; group->threads[spu_num] = spu; group->args[spu_num] = { a1, a2, a3, a4 }; group->images[spu_num] = img; u32 count = 0; for (auto& t : group->threads) { if (t) { count++; } } if (count > group->num) { throw EXCEPTION("Unexpected thread count (%d)", count); } if (count == group->num) { group->state = SPU_THREAD_GROUP_STATUS_INITIALIZED; } return spu->get_id(); } s32 sys_spu_thread_initialize(vm::ptr thread, u32 group_id, u32 spu_num, vm::ptr img, vm::ptr attr, vm::ptr arg) { sys_spu.Warning("sys_spu_thread_initialize(thread=*0x%x, group=0x%x, spu_num=%d, img=*0x%x, attr=*0x%x, arg=*0x%x)", thread, group_id, spu_num, img, attr, arg); LV2_LOCK; const auto group = idm::get(group_id); if (!group) { return CELL_ESRCH; } if (spu_num >= group->threads.size()) { return CELL_EINVAL; } if (group->threads[spu_num] || group->state != SPU_THREAD_GROUP_STATUS_NOT_INITIALIZED) { return CELL_EBUSY; } *thread = spu_thread_initialize(group_id, spu_num, img, attr->name ? std::string(attr->name.get_ptr(), attr->name_len) : "", attr->option, arg->arg1, arg->arg2, arg->arg3, arg->arg4); return CELL_OK; } s32 sys_spu_thread_set_argument(u32 id, vm::ptr arg) { sys_spu.Warning("sys_spu_thread_set_argument(id=0x%x, arg=*0x%x)", id, arg); LV2_LOCK; const auto thread = idm::get(id); if (!thread) { return CELL_ESRCH; } const auto group = thread->tg.lock(); if (!group) { throw EXCEPTION("Invalid SPU thread group"); } if (thread->index >= group->threads.size() || group->threads[thread->index] != thread) { throw EXCEPTION("Unexpected SPU thread index (%d)", thread->index); } group->args[thread->index].arg1 = arg->arg1; group->args[thread->index].arg2 = arg->arg2; group->args[thread->index].arg3 = arg->arg3; group->args[thread->index].arg4 = arg->arg4; return CELL_OK; } s32 sys_spu_thread_get_exit_status(u32 id, vm::ptr status) { sys_spu.Warning("sys_spu_thread_get_exit_status(id=0x%x, status=*0x%x)", id, status); LV2_LOCK; const auto thread = idm::get(id); if (!thread) { return CELL_ESRCH; } // TODO: check CELL_ESTAT condition *status = thread->ch_out_mbox.pop(); if (thread->ch_out_mbox.notification_required) { throw EXCEPTION("Unexpected"); } return CELL_OK; } s32 sys_spu_thread_group_create(vm::ptr id, u32 num, s32 prio, vm::ptr attr) { sys_spu.Warning("sys_spu_thread_group_create(id=*0x%x, num=%d, prio=%d, attr=*0x%x)", id, num, prio, attr); // TODO: max num value should be affected by sys_spu_initialize() settings if (!num || num > 6 || prio < 16 || prio > 255) { return CELL_EINVAL; } if (attr->type) { sys_spu.Todo("Unsupported SPU Thread Group type (0x%x)", attr->type); } *id = idm::make(std::string{ attr->name.get_ptr(), attr->nsize - 1 }, num, prio, attr->type, attr->ct); return CELL_OK; } s32 sys_spu_thread_group_destroy(u32 id) { sys_spu.Warning("sys_spu_thread_group_destroy(id=0x%x)", id); LV2_LOCK; const auto group = idm::get(id); if (!group) { return CELL_ESRCH; } if (group->state > SPU_THREAD_GROUP_STATUS_INITIALIZED) { return CELL_EBUSY; } // clear threads for (auto& t : group->threads) { if (t) { idm::remove(t->get_id()); t.reset(); } } group->state = SPU_THREAD_GROUP_STATUS_NOT_INITIALIZED; // hack idm::remove(id); return CELL_OK; } s32 sys_spu_thread_group_start(u32 id) { sys_spu.Warning("sys_spu_thread_group_start(id=0x%x)", id); LV2_LOCK; const auto group = idm::get(id); if (!group) { return CELL_ESRCH; } if (group->state != SPU_THREAD_GROUP_STATUS_INITIALIZED) { return CELL_ESTAT; } // SPU_THREAD_GROUP_STATUS_READY state is not used group->state = SPU_THREAD_GROUP_STATUS_RUNNING; group->join_state = 0; for (auto& t : group->threads) { if (t) { if (t->index >= group->threads.size()) { throw EXCEPTION("Unexpected SPU thread index (%d)", t->index); } auto& args = group->args[t->index]; auto& image = group->images[t->index]; // Copy SPU image: // TODO: use segment info std::memcpy(vm::get_ptr(t->offset), vm::get_ptr(image->addr), 256 * 1024); t->pc = image->entry_point; t->run(); t->gpr[3] = v128::from64(0, args.arg1); t->gpr[4] = v128::from64(0, args.arg2); t->gpr[5] = v128::from64(0, args.arg3); t->gpr[6] = v128::from64(0, args.arg4); t->status.exchange(SPU_STATUS_RUNNING); } } // because SPU_THREAD_GROUP_STATUS_READY is not possible, run event is delivered immediately group->send_run_event(lv2_lock, id, 0, 0); // TODO: check data2 and data3 for (auto& t : group->threads) { if (t) t->exec(); } return CELL_OK; } s32 sys_spu_thread_group_suspend(u32 id) { sys_spu.Log("sys_spu_thread_group_suspend(id=0x%x)", id); LV2_LOCK; const auto group = idm::get(id); if (!group) { return CELL_ESRCH; } if (group->type & SYS_SPU_THREAD_GROUP_TYPE_EXCLUSIVE_NON_CONTEXT) // this check may be inaccurate { return CELL_EINVAL; } if (group->state <= SPU_THREAD_GROUP_STATUS_INITIALIZED || group->state == SPU_THREAD_GROUP_STATUS_STOPPED) { return CELL_ESTAT; } // SPU_THREAD_GROUP_STATUS_READY state is not used if (group->state == SPU_THREAD_GROUP_STATUS_RUNNING) { group->state = SPU_THREAD_GROUP_STATUS_SUSPENDED; } else if (group->state == SPU_THREAD_GROUP_STATUS_WAITING) { group->state = SPU_THREAD_GROUP_STATUS_WAITING_AND_SUSPENDED; } else if (group->state == SPU_THREAD_GROUP_STATUS_SUSPENDED || group->state == SPU_THREAD_GROUP_STATUS_WAITING_AND_SUSPENDED) { return CELL_OK; // probably, nothing to do there } else { return CELL_ESTAT; } for (auto& t : group->threads) { if (t) t->sleep(); // trigger status check } return CELL_OK; } s32 sys_spu_thread_group_resume(u32 id) { sys_spu.Log("sys_spu_thread_group_resume(id=0x%x)", id); LV2_LOCK; const auto group = idm::get(id); if (!group) { return CELL_ESRCH; } if (group->type & SYS_SPU_THREAD_GROUP_TYPE_EXCLUSIVE_NON_CONTEXT) // this check may be inaccurate { return CELL_EINVAL; } // SPU_THREAD_GROUP_STATUS_READY state is not used if (group->state == SPU_THREAD_GROUP_STATUS_SUSPENDED) { group->state = SPU_THREAD_GROUP_STATUS_RUNNING; } else if (group->state == SPU_THREAD_GROUP_STATUS_WAITING_AND_SUSPENDED) { group->state = SPU_THREAD_GROUP_STATUS_WAITING; } else { return CELL_ESTAT; } for (auto& t : group->threads) { if (t) t->awake(); // untrigger status check } group->cv.notify_all(); return CELL_OK; } s32 sys_spu_thread_group_yield(u32 id) { sys_spu.Log("sys_spu_thread_group_yield(id=0x%x)", id); LV2_LOCK; const auto group = idm::get(id); if (!group) { return CELL_ESRCH; } if (group->type & SYS_SPU_THREAD_GROUP_TYPE_EXCLUSIVE_NON_CONTEXT) // this check may be inaccurate { return CELL_OK; } if (group->state != SPU_THREAD_GROUP_STATUS_RUNNING) { return CELL_ESTAT; } // SPU_THREAD_GROUP_STATUS_READY state is not used, so this function does nothing return CELL_OK; } s32 sys_spu_thread_group_terminate(u32 id, s32 value) { sys_spu.Warning("sys_spu_thread_group_terminate(id=0x%x, value=0x%x)", id, value); LV2_LOCK; // seems the id can be either SPU Thread Group or SPU Thread const auto thread = idm::get(id); const auto group = thread ? thread->tg.lock() : idm::get(id); if (!group && !thread) { return CELL_ESRCH; } if (thread) { for (auto& t : group->threads) { // find primary (?) thread and compare it with the one specified if (t) { if (t == thread) { break; } else { return CELL_EPERM; } } } } if (group->state <= SPU_THREAD_GROUP_STATUS_INITIALIZED || group->state == SPU_THREAD_GROUP_STATUS_WAITING || group->state == SPU_THREAD_GROUP_STATUS_WAITING_AND_SUSPENDED) { return CELL_ESTAT; } for (auto& t : group->threads) { if (t) t->stop(); } group->state = SPU_THREAD_GROUP_STATUS_INITIALIZED; group->exit_status = value; group->join_state |= SPU_TGJSF_TERMINATED; group->cv.notify_one(); return CELL_OK; } s32 sys_spu_thread_group_join(u32 id, vm::ptr cause, vm::ptr status) { sys_spu.Warning("sys_spu_thread_group_join(id=0x%x, cause=*0x%x, status=*0x%x)", id, cause, status); LV2_LOCK; const auto group = idm::get(id); if (!group) { return CELL_ESRCH; } if (group->state < SPU_THREAD_GROUP_STATUS_INITIALIZED) { return CELL_ESTAT; } if (group->join_state.fetch_or(SPU_TGJSF_IS_JOINING) & SPU_TGJSF_IS_JOINING) { // another PPU thread is joining this thread group return CELL_EBUSY; } while ((group->join_state & ~SPU_TGJSF_IS_JOINING) == 0) { bool stopped = true; for (auto& t : group->threads) { if (t) { if ((t->status & SPU_STATUS_STOPPED_BY_STOP) == 0) { stopped = false; break; } } } if (stopped) { break; } CHECK_EMU_STATUS; group->cv.wait_for(lv2_lock, std::chrono::milliseconds(1)); } switch (group->join_state & ~SPU_TGJSF_IS_JOINING) { case 0: { if (cause) *cause = SYS_SPU_THREAD_GROUP_JOIN_ALL_THREADS_EXIT; break; } case SPU_TGJSF_GROUP_EXIT: { if (cause) *cause = SYS_SPU_THREAD_GROUP_JOIN_GROUP_EXIT; break; } case SPU_TGJSF_TERMINATED: { if (cause) *cause = SYS_SPU_THREAD_GROUP_JOIN_TERMINATED; break; } default: { throw EXCEPTION("Unexpected join_state"); } } if (status) { *status = group->exit_status; } group->join_state &= ~SPU_TGJSF_IS_JOINING; group->state = SPU_THREAD_GROUP_STATUS_INITIALIZED; // hack return CELL_OK; } s32 sys_spu_thread_write_ls(u32 id, u32 address, u64 value, u32 type) { sys_spu.Log("sys_spu_thread_write_ls(id=0x%x, address=0x%x, value=0x%llx, type=%d)", id, address, value, type); LV2_LOCK; const auto thread = idm::get(id); if (!thread) { return CELL_ESRCH; } if (address >= 0x40000 || address + type > 0x40000 || address % type) // check range and alignment { return CELL_EINVAL; } const auto group = thread->tg.lock(); if (!group) { throw EXCEPTION("Invalid SPU thread group"); } if (group->state < SPU_THREAD_GROUP_STATUS_WAITING || group->state > SPU_THREAD_GROUP_STATUS_RUNNING) { return CELL_ESTAT; } switch (type) { case 1: thread->write8(address, (u8)value); break; case 2: thread->write16(address, (u16)value); break; case 4: thread->write32(address, (u32)value); break; case 8: thread->write64(address, value); break; default: return CELL_EINVAL; } return CELL_OK; } s32 sys_spu_thread_read_ls(u32 id, u32 address, vm::ptr value, u32 type) { sys_spu.Log("sys_spu_thread_read_ls(id=0x%x, address=0x%x, value=*0x%x, type=%d)", id, address, value, type); LV2_LOCK; const auto thread = idm::get(id); if (!thread) { return CELL_ESRCH; } if (address >= 0x40000 || address + type > 0x40000 || address % type) // check range and alignment { return CELL_EINVAL; } const auto group = thread->tg.lock(); if (!group) { throw EXCEPTION("Invalid SPU thread group"); } if (group->state < SPU_THREAD_GROUP_STATUS_WAITING || group->state > SPU_THREAD_GROUP_STATUS_RUNNING) { return CELL_ESTAT; } switch (type) { case 1: *value = thread->read8(address); break; case 2: *value = thread->read16(address); break; case 4: *value = thread->read32(address); break; case 8: *value = thread->read64(address); break; default: return CELL_EINVAL; } return CELL_OK; } s32 sys_spu_thread_write_spu_mb(u32 id, u32 value) { sys_spu.Warning("sys_spu_thread_write_spu_mb(id=0x%x, value=0x%x)", id, value); LV2_LOCK; const auto thread = idm::get(id); if (!thread) { return CELL_ESRCH; } const auto group = thread->tg.lock(); if (!group) { throw EXCEPTION("Invalid SPU thread group"); } if (group->state < SPU_THREAD_GROUP_STATUS_WAITING || group->state > SPU_THREAD_GROUP_STATUS_RUNNING) { return CELL_ESTAT; } if (thread->ch_in_mbox.push(value)) { // lock for reliable notification std::lock_guard lock(thread->mutex); thread->cv.notify_one(); } return CELL_OK; } s32 sys_spu_thread_set_spu_cfg(u32 id, u64 value) { sys_spu.Warning("sys_spu_thread_set_spu_cfg(id=0x%x, value=0x%x)", id, value); LV2_LOCK; const auto thread = idm::get(id); if (!thread) { return CELL_ESRCH; } if (value > 3) { return CELL_EINVAL; } thread->snr_config = value; return CELL_OK; } s32 sys_spu_thread_get_spu_cfg(u32 id, vm::ptr value) { sys_spu.Warning("sys_spu_thread_get_spu_cfg(id=0x%x, value=*0x%x)", id, value); LV2_LOCK; const auto thread = idm::get(id); if (!thread) { return CELL_ESRCH; } *value = thread->snr_config; return CELL_OK; } s32 sys_spu_thread_write_snr(u32 id, u32 number, u32 value) { sys_spu.Log("sys_spu_thread_write_snr(id=0x%x, number=%d, value=0x%x)", id, number, value); LV2_LOCK; const auto thread = idm::get(id); if (!thread) { return CELL_ESRCH; } if (number > 1) { return CELL_EINVAL; } const auto group = thread->tg.lock(); if (!group) { throw EXCEPTION("Invalid SPU thread group"); } //if (group->state < SPU_THREAD_GROUP_STATUS_WAITING || group->state > SPU_THREAD_GROUP_STATUS_RUNNING) // ??? //{ // return CELL_ESTAT; //} thread->push_snr(number, value); return CELL_OK; } s32 sys_spu_thread_group_connect_event(u32 id, u32 eq, u32 et) { sys_spu.Warning("sys_spu_thread_group_connect_event(id=0x%x, eq=0x%x, et=%d)", id, eq, et); LV2_LOCK; const auto group = idm::get(id); const auto queue = idm::get(eq); if (!group || !queue) { return CELL_ESRCH; } switch (et) { case SYS_SPU_THREAD_GROUP_EVENT_RUN: { if (!group->ep_run.expired()) { return CELL_EBUSY; } group->ep_run = queue; break; } case SYS_SPU_THREAD_GROUP_EVENT_EXCEPTION: { if (!group->ep_exception.expired()) { return CELL_EBUSY; } group->ep_exception = queue; break; } case SYS_SPU_THREAD_GROUP_EVENT_SYSTEM_MODULE: { if (!group->ep_sysmodule.expired()) { return CELL_EBUSY; } group->ep_sysmodule = queue; break; } default: { sys_spu.Error("sys_spu_thread_group_connect_event(): unknown event type (%d)", et); return CELL_EINVAL; } } return CELL_OK; } s32 sys_spu_thread_group_disconnect_event(u32 id, u32 et) { sys_spu.Warning("sys_spu_thread_group_disconnect_event(id=0x%x, et=%d)", id, et); LV2_LOCK; const auto group = idm::get(id); if (!group) { return CELL_ESRCH; } switch (et) { case SYS_SPU_THREAD_GROUP_EVENT_RUN: { if (group->ep_run.expired()) { return CELL_ENOTCONN; } group->ep_run.reset(); break; } case SYS_SPU_THREAD_GROUP_EVENT_EXCEPTION: { if (group->ep_exception.expired()) { return CELL_ENOTCONN; } group->ep_exception.reset(); break; } case SYS_SPU_THREAD_GROUP_EVENT_SYSTEM_MODULE: { if (group->ep_sysmodule.expired()) { return CELL_ENOTCONN; } group->ep_sysmodule.reset(); break; } default: { sys_spu.Error("sys_spu_thread_group_disconnect_event(): unknown event type (%d)", et); return CELL_EINVAL; } } return CELL_OK; } s32 sys_spu_thread_connect_event(u32 id, u32 eq, u32 et, u8 spup) { sys_spu.Warning("sys_spu_thread_connect_event(id=0x%x, eq=0x%x, et=%d, spup=%d)", id, eq, et, spup); LV2_LOCK; const auto thread = idm::get(id); const auto queue = idm::get(eq); if (!thread || !queue) { return CELL_ESRCH; } if (et != SYS_SPU_THREAD_EVENT_USER || spup > 63 || queue->type != SYS_PPU_QUEUE) { sys_spu.Error("sys_spu_thread_connect_event(): invalid arguments (et=%d, spup=%d, queue->type=%d)", et, spup, queue->type); return CELL_EINVAL; } auto& port = thread->spup[spup]; if (!port.expired()) { return CELL_EISCONN; } port = queue; return CELL_OK; } s32 sys_spu_thread_disconnect_event(u32 id, u32 et, u8 spup) { sys_spu.Warning("sys_spu_thread_disconnect_event(id=0x%x, et=%d, spup=%d)", id, et, spup); LV2_LOCK; const auto thread = idm::get(id); if (!thread) { return CELL_ESRCH; } if (et != SYS_SPU_THREAD_EVENT_USER || spup > 63) { sys_spu.Error("sys_spu_thread_disconnect_event(): invalid arguments (et=%d, spup=%d)", et, spup); return CELL_EINVAL; } auto& port = thread->spup[spup]; if (port.expired()) { return CELL_ENOTCONN; } port.reset(); return CELL_OK; } s32 sys_spu_thread_bind_queue(u32 id, u32 spuq, u32 spuq_num) { sys_spu.Warning("sys_spu_thread_bind_queue(id=0x%x, spuq=0x%x, spuq_num=0x%x)", id, spuq, spuq_num); LV2_LOCK; const auto thread = idm::get(id); const auto queue = idm::get(spuq); if (!thread || !queue) { return CELL_ESRCH; } if (queue->type != SYS_SPU_QUEUE) { return CELL_EINVAL; } for (auto& v : thread->spuq) { if (auto q = v.second.lock()) { if (v.first == spuq_num || q == queue) { return CELL_EBUSY; } } } for (auto& v : thread->spuq) { if (v.second.expired()) { v.first = spuq_num; v.second = queue; return CELL_OK; } } return CELL_EAGAIN; } s32 sys_spu_thread_unbind_queue(u32 id, u32 spuq_num) { sys_spu.Warning("sys_spu_thread_unbind_queue(id=0x%x, spuq_num=0x%x)", id, spuq_num); LV2_LOCK; const auto thread = idm::get(id); if (!thread) { return CELL_ESRCH; } for (auto& v : thread->spuq) { if (v.first == spuq_num && !v.second.expired()) { v.second.reset(); return CELL_OK; } } return CELL_ESRCH; } s32 sys_spu_thread_group_connect_event_all_threads(u32 id, u32 eq, u64 req, vm::ptr spup) { sys_spu.Warning("sys_spu_thread_group_connect_event_all_threads(id=0x%x, eq=0x%x, req=0x%llx, spup=*0x%x)", id, eq, req, spup); LV2_LOCK; const auto group = idm::get(id); const auto queue = idm::get(eq); if (!group || !queue) { return CELL_ESRCH; } if (!req) { return CELL_EINVAL; } if (group->state < SPU_THREAD_GROUP_STATUS_INITIALIZED) { return CELL_ESTAT; } u8 port = 0; // SPU Port number for (; port < 64; port++) { if (!(req & (1ull << port))) { continue; } bool found = true; for (auto& t : group->threads) { if (t) { if (!t->spup[port].expired()) { found = false; break; } } } if (found) { break; } } if (port == 64) { return CELL_EISCONN; } for (auto& t : group->threads) { if (t) { t->spup[port] = queue; } } *spup = port; return CELL_OK; } s32 sys_spu_thread_group_disconnect_event_all_threads(u32 id, u8 spup) { sys_spu.Warning("sys_spu_thread_group_disconnect_event_all_threads(id=0x%x, spup=%d)", id, spup); LV2_LOCK; const auto group = idm::get(id); if (!group) { return CELL_ESRCH; } if (spup > 63) { return CELL_EINVAL; } for (auto& t : group->threads) { if (t) { t->spup[spup].reset(); } } return CELL_OK; } s32 sys_raw_spu_create(vm::ptr id, vm::ptr attr) { sys_spu.Warning("sys_raw_spu_create(id=*0x%x, attr=*0x%x)", id, attr); LV2_LOCK; // TODO: check number set by sys_spu_initialize() const auto thread = Emu.GetCPU().NewRawSPUThread(); if (!thread) { return CELL_EAGAIN; } thread->run(); *id = thread->index; return CELL_OK; } s32 sys_raw_spu_destroy(PPUThread& ppu, u32 id) { sys_spu.Warning("sys_raw_spu_destroy(id=%d)", id); LV2_LOCK; const auto thread = Emu.GetCPU().GetRawSPUThread(id); if (!thread) { return CELL_ESRCH; } // TODO: CELL_EBUSY is not returned // Stop thread thread->stop(); // Clear interrupt handlers for (auto& intr : thread->int_ctrl) { if (intr.tag) { if (intr.tag->handler) { intr.tag->handler->join(ppu, lv2_lock); } idm::remove(intr.tag->id); } } idm::remove(thread->get_id()); return CELL_OK; } s32 sys_raw_spu_create_interrupt_tag(u32 id, u32 class_id, u32 hwthread, vm::ptr intrtag) { sys_spu.Warning("sys_raw_spu_create_interrupt_tag(id=%d, class_id=%d, hwthread=0x%x, intrtag=*0x%x)", id, class_id, hwthread, intrtag); LV2_LOCK; const auto thread = Emu.GetCPU().GetRawSPUThread(id); if (!thread) { return CELL_ESRCH; } if (class_id != 0 && class_id != 2) { return CELL_EINVAL; } auto& int_ctrl = thread->int_ctrl[class_id]; if (int_ctrl.tag) { return CELL_EAGAIN; } int_ctrl.tag = idm::make_ptr(); *intrtag = int_ctrl.tag->id; return CELL_OK; } s32 sys_raw_spu_set_int_mask(u32 id, u32 class_id, u64 mask) { sys_spu.Log("sys_raw_spu_set_int_mask(id=%d, class_id=%d, mask=0x%llx)", id, class_id, mask); if (class_id != 0 && class_id != 2) { return CELL_EINVAL; } const auto thread = Emu.GetCPU().GetRawSPUThread(id); if (!thread) { return CELL_ESRCH; } thread->int_ctrl[class_id].mask.exchange(mask); return CELL_OK; } s32 sys_raw_spu_get_int_mask(u32 id, u32 class_id, vm::ptr mask) { sys_spu.Log("sys_raw_spu_get_int_mask(id=%d, class_id=%d, mask=*0x%x)", id, class_id, mask); if (class_id != 0 && class_id != 2) { return CELL_EINVAL; } const auto thread = Emu.GetCPU().GetRawSPUThread(id); if (!thread) { return CELL_ESRCH; } *mask = thread->int_ctrl[class_id].mask; return CELL_OK; } s32 sys_raw_spu_set_int_stat(u32 id, u32 class_id, u64 stat) { sys_spu.Log("sys_raw_spu_set_int_stat(id=%d, class_id=%d, stat=0x%llx)", id, class_id, stat); if (class_id != 0 && class_id != 2) { return CELL_EINVAL; } const auto thread = Emu.GetCPU().GetRawSPUThread(id); if (!thread) { return CELL_ESRCH; } thread->int_ctrl[class_id].clear(stat); return CELL_OK; } s32 sys_raw_spu_get_int_stat(u32 id, u32 class_id, vm::ptr stat) { sys_spu.Log("sys_raw_spu_get_int_stat(id=%d, class_id=%d, stat=*0x%x)", id, class_id, stat); if (class_id != 0 && class_id != 2) { return CELL_EINVAL; } const auto thread = Emu.GetCPU().GetRawSPUThread(id); if (!thread) { return CELL_ESRCH; } *stat = thread->int_ctrl[class_id].stat; return CELL_OK; } s32 sys_raw_spu_read_puint_mb(u32 id, vm::ptr value) { sys_spu.Log("sys_raw_spu_read_puint_mb(id=%d, value=*0x%x)", id, value); const auto thread = Emu.GetCPU().GetRawSPUThread(id); if (!thread) { return CELL_ESRCH; } *value = thread->ch_out_intr_mbox.pop(); if (thread->ch_out_intr_mbox.notification_required) { // lock for reliable notification std::lock_guard lock(thread->mutex); thread->cv.notify_one(); } return CELL_OK; } s32 sys_raw_spu_set_spu_cfg(u32 id, u32 value) { sys_spu.Log("sys_raw_spu_set_spu_cfg(id=%d, value=0x%x)", id, value); if (value > 3) { throw EXCEPTION("Unexpected value (0x%x)", value); } const auto thread = Emu.GetCPU().GetRawSPUThread(id); if (!thread) { return CELL_ESRCH; } thread->snr_config = value; return CELL_OK; } s32 sys_raw_spu_get_spu_cfg(u32 id, vm::ptr value) { sys_spu.Log("sys_raw_spu_get_spu_afg(id=%d, value=*0x%x)", id, value); const auto thread = Emu.GetCPU().GetRawSPUThread(id); if (!thread) { return CELL_ESRCH; } *value = (u32)thread->snr_config; return CELL_OK; } void sys_spu_thread_exit(SPUThread & spu, s32 status) { // Cancel any pending status update requests spu.set_ch_value(MFC_WrTagUpdate, 0); while (spu.get_ch_count(MFC_RdTagStat) != 1); spu.get_ch_value(MFC_RdTagStat); // Wait for all pending DMA operations to complete spu.set_ch_value(MFC_WrTagMask, 0xFFFFFFFF); spu.set_ch_value(MFC_WrTagUpdate, MFC_TAG_UPDATE_ALL); spu.get_ch_value(MFC_RdTagStat); spu.set_ch_value(SPU_WrOutMbox, status); spu.stop_and_signal(0x102); } void sys_spu_thread_group_exit(SPUThread & spu, s32 status) { // Cancel any pending status update requests spu.set_ch_value(MFC_WrTagUpdate, 0); while (spu.get_ch_count(MFC_RdTagStat) != 1); spu.get_ch_value(MFC_RdTagStat); // Wait for all pending DMA operations to complete spu.set_ch_value(MFC_WrTagMask, 0xFFFFFFFF); spu.set_ch_value(MFC_WrTagUpdate, MFC_TAG_UPDATE_ALL); spu.get_ch_value(MFC_RdTagStat); spu.set_ch_value(SPU_WrOutMbox, status); spu.stop_and_signal(0x101); } s32 sys_spu_thread_send_event(SPUThread & spu, u8 spup, u32 data0, u32 data1) { if (spup > 0x3F) { return CELL_EINVAL; } if (spu.get_ch_count(SPU_RdInMbox)) { return CELL_EBUSY; } spu.set_ch_value(SPU_WrOutMbox, data1); spu.set_ch_value(SPU_WrOutIntrMbox, (spup << 24) | (data0 & 0x00FFFFFF)); return spu.get_ch_value(SPU_RdInMbox); } s32 sys_spu_thread_switch_system_module(SPUThread & spu, u32 status) { if (spu.get_ch_count(SPU_RdInMbox)) { return CELL_EBUSY; } // Cancel any pending status update requests spu.set_ch_value(MFC_WrTagUpdate, 0); while (spu.get_ch_count(MFC_RdTagStat) != 1); spu.get_ch_value(MFC_RdTagStat); // Wait for all pending DMA operations to complete spu.set_ch_value(MFC_WrTagMask, 0xFFFFFFFF); spu.set_ch_value(MFC_WrTagUpdate, MFC_TAG_UPDATE_ALL); spu.get_ch_value(MFC_RdTagStat); s32 result; do { spu.set_ch_value(SPU_WrOutMbox, status); spu.stop_and_signal(0x120); } while ((result = spu.get_ch_value(SPU_RdInMbox)) == CELL_EBUSY); return result; }