#include "stdafx.h" #include "rpcs3/Ini.h" #include "Utilities/Log.h" #include "Emu/Memory/Memory.h" #include "Emu/System.h" #include "Emu/IdManager.h" #include "Emu/Cell/PPUThread.h" #include "Emu/SysCalls/ErrorCodes.h" #include "Emu/SysCalls/lv2/sys_spu.h" #include "Emu/SysCalls/lv2/sys_event_flag.h" #include "Emu/SysCalls/lv2/sys_event.h" #include "Emu/SysCalls/lv2/sys_interrupt.h" #include "Emu/Cell/SPUDisAsm.h" #include "Emu/Cell/SPUThread.h" #include "Emu/Cell/SPUInterpreter.h" #include "Emu/Cell/SPURecompiler.h" #include extern u64 get_timebased_time(); // defined here since SPUDisAsm.cpp doesn't exist const spu_opcode_table_t SPUDisAsm::opcodes{ DEFINE_SPU_OPCODES(&SPUDisAsm::), &SPUDisAsm::UNK }; thread_local bool spu_channel_t::notification_required; void spu_int_ctrl_t::set(u64 ints) { // leave only enabled interrupts ints &= mask; // notify if at least 1 bit was set if (ints && ~stat._or(ints) & ints && tag) { LV2_LOCK; if (tag && tag->handler) { tag->handler->signal++; tag->handler->thread->cv.notify_one(); } } } void spu_int_ctrl_t::clear(u64 ints) { stat &= ~ints; } const spu_imm_table_t g_spu_imm; SPUThread::SPUThread(CPUThreadType type, const std::string& name, std::function thread_name, u32 index, u32 offset) : CPUThread(type, name, std::move(thread_name)) , index(index) , offset(offset) { } SPUThread::SPUThread(const std::string& name, u32 index) : CPUThread(CPU_THREAD_SPU, name, WRAP_EXPR(fmt::format("SPU[0x%x] Thread (%s)[0x%05x]", m_id, m_name.c_str(), pc))) , index(index) , offset(vm::alloc(0x40000, vm::main)) { if (!offset) { throw EXCEPTION("Failed to allocate SPU local storage"); } } SPUThread::~SPUThread() { if (m_type == CPU_THREAD_SPU) { join(); // Deallocate Local Storage vm::dealloc_verbose_nothrow(offset, vm::main); } } bool SPUThread::is_paused() const { if (CPUThread::is_paused()) { return true; } if (const auto group = tg.lock()) { if (group->state >= SPU_THREAD_GROUP_STATUS_WAITING && group->state <= SPU_THREAD_GROUP_STATUS_SUSPENDED) { return true; } } return false; } void SPUThread::dump_info() const { CPUThread::dump_info(); } void SPUThread::task() { std::fesetround(FE_TOWARDZERO); if (!custom_task && !m_dec) { // Select opcode table (TODO) const auto& table = Ini.SPUDecoderMode.GetValue() == 0 ? spu_interpreter::precise::g_spu_opcode_table : spu_interpreter::fast::g_spu_opcode_table; // LS base address const auto base = vm::get_ptr>(offset); while (true) { if (!m_state) { // read opcode const u32 opcode = base[pc / 4]; // call interpreter function table[opcode](*this, { opcode }); // next instruction pc += 4; continue; } if (check_status()) { return; } } } if (custom_task) { if (check_status()) return; return custom_task(*this); } while (!m_state || !check_status()) { // decode instruction using specified decoder pc += m_dec->DecodeMemory(pc + offset); } } void SPUThread::init_regs() { gpr = {}; fpscr.Reset(); ch_mfc_args = {}; mfc_queue.clear(); ch_tag_mask = 0; ch_tag_stat.data.store({}); ch_stall_stat.data.store({}); ch_atomic_stat.data.store({}); ch_in_mbox.clear(); ch_out_mbox.data.store({}); ch_out_intr_mbox.data.store({}); snr_config = 0; ch_snr1.data.store({}); ch_snr2.data.store({}); ch_event_mask = 0; ch_event_stat = 0; last_raddr = 0; ch_dec_start_timestamp = get_timebased_time(); // ??? ch_dec_value = 0; run_ctrl = 0; status = 0; npc = 0; int_ctrl[0].clear(); int_ctrl[1].clear(); int_ctrl[2].clear(); gpr[1]._u32[3] = 0x3FFF0; // initial stack frame pointer } void SPUThread::init_stack() { // nothing to do } void SPUThread::close_stack() { // nothing to do here } void SPUThread::do_run() { m_dec.reset(); switch (auto mode = Ini.SPUDecoderMode.GetValue()) { case 0: // Interpreter 1 (Precise) case 1: // Interpreter 2 (Fast) { break; } case 2: { m_dec.reset(new SPURecompilerDecoder(*this)); break; } default: { LOG_ERROR(SPU, "Invalid SPU decoder mode: %d", mode); Emu.Pause(); } } } void SPUThread::fast_call(u32 ls_addr) { if (!is_current()) { throw EXCEPTION("Called from the wrong thread"); } // LS:0x0: this is originally the entry point of the interrupt handler, but interrupts are not implemented write32(0x0, 2); auto old_pc = pc; auto old_lr = gpr[0]._u32[3]; auto old_stack = gpr[1]._u32[3]; // only saved and restored (may be wrong) auto old_task = std::move(custom_task); pc = ls_addr; gpr[0]._u32[3] = 0x0; custom_task = nullptr; try { task(); } catch (CPUThreadReturn) { } m_state &= ~CPU_STATE_RETURN; pc = old_pc; gpr[0]._u32[3] = old_lr; gpr[1]._u32[3] = old_stack; custom_task = std::move(old_task); } void SPUThread::do_dma_transfer(u32 cmd, spu_mfc_arg_t args) { if (cmd & (MFC_BARRIER_MASK | MFC_FENCE_MASK)) { _mm_mfence(); } u32 eal = VM_CAST(args.ea); if (eal >= SYS_SPU_THREAD_BASE_LOW && m_type == CPU_THREAD_SPU) // SPU Thread Group MMIO (LS and SNR) { const u32 index = (eal - SYS_SPU_THREAD_BASE_LOW) / SYS_SPU_THREAD_OFFSET; // thread number in group const u32 offset = (eal - SYS_SPU_THREAD_BASE_LOW) % SYS_SPU_THREAD_OFFSET; // LS offset or MMIO register const auto group = tg.lock(); if (group && index < group->num && group->threads[index]) { auto& spu = static_cast(*group->threads[index]); if (offset + args.size - 1 < 0x40000) // LS access { eal = spu.offset + offset; // redirect access } else if ((cmd & MFC_PUT_CMD) && args.size == 4 && (offset == SYS_SPU_THREAD_SNR1 || offset == SYS_SPU_THREAD_SNR2)) { spu.push_snr(SYS_SPU_THREAD_SNR2 == offset, read32(args.lsa)); return; } else { throw EXCEPTION("Invalid MMIO offset (cmd=0x%x, lsa=0x%x, ea=0x%llx, tag=0x%x, size=0x%x)", cmd, args.lsa, args.ea, args.tag, args.size); } } else { throw EXCEPTION("Invalid thread type (cmd=0x%x, lsa=0x%x, ea=0x%llx, tag=0x%x, size=0x%x)", cmd, args.lsa, args.ea, args.tag, args.size); } } switch (cmd & ~(MFC_BARRIER_MASK | MFC_FENCE_MASK)) { case MFC_PUT_CMD: case MFC_PUTR_CMD: { memcpy(vm::get_ptr(eal), vm::get_ptr(offset + args.lsa), args.size); return; } case MFC_GET_CMD: { memcpy(vm::get_ptr(offset + args.lsa), vm::get_ptr(eal), args.size); return; } } throw EXCEPTION("Invalid command %s (cmd=0x%x, lsa=0x%x, ea=0x%llx, tag=0x%x, size=0x%x)", get_mfc_cmd_name(cmd), cmd, args.lsa, args.ea, args.tag, args.size); } void SPUThread::do_dma_list_cmd(u32 cmd, spu_mfc_arg_t args) { if (!(cmd & MFC_LIST_MASK)) { throw EXCEPTION("Invalid command %s (cmd=0x%x, lsa=0x%x, ea=0x%llx, tag=0x%x, size=0x%x)", get_mfc_cmd_name(cmd), cmd, args.lsa, args.ea, args.tag, args.size); } const u32 list_addr = args.ea & 0x3ffff; const u32 list_size = args.size / 8; args.lsa &= 0x3fff0; struct list_element { be_t sb; // Stall-and-Notify bit (0x8000) be_t ts; // List Transfer Size be_t ea; // External Address Low }; for (u32 i = 0; i < list_size; i++) { auto rec = vm::ptr::make(offset + list_addr + i * 8); const u32 size = rec->ts; const u32 addr = rec->ea; if (size) { spu_mfc_arg_t transfer; transfer.ea = addr; transfer.lsa = args.lsa | (addr & 0xf); transfer.tag = args.tag; transfer.size = size; do_dma_transfer(cmd & ~MFC_LIST_MASK, transfer); args.lsa += std::max(size, 16); } if (rec->sb & 0x8000) { ch_stall_stat.set_value((1 << args.tag) | ch_stall_stat.get_value()); spu_mfc_arg_t stalled; stalled.ea = (args.ea & ~0xffffffff) | (list_addr + (i + 1) * 8); stalled.lsa = args.lsa; stalled.tag = args.tag; stalled.size = (list_size - i - 1) * 8; mfc_queue.emplace_back(cmd, stalled); return; } } } void SPUThread::process_mfc_cmd(u32 cmd) { if (Ini.HLELogging.GetValue()) { LOG_NOTICE(SPU, "DMA %s: cmd=0x%x, lsa=0x%x, ea=0x%llx, tag=0x%x, size=0x%x", get_mfc_cmd_name(cmd), cmd, ch_mfc_args.lsa, ch_mfc_args.ea, ch_mfc_args.tag, ch_mfc_args.size); } switch (cmd) { case MFC_PUT_CMD: case MFC_PUTB_CMD: case MFC_PUTF_CMD: case MFC_PUTR_CMD: case MFC_PUTRB_CMD: case MFC_PUTRF_CMD: case MFC_GET_CMD: case MFC_GETB_CMD: case MFC_GETF_CMD: { return do_dma_transfer(cmd, ch_mfc_args); } case MFC_PUTL_CMD: case MFC_PUTLB_CMD: case MFC_PUTLF_CMD: case MFC_PUTRL_CMD: case MFC_PUTRLB_CMD: case MFC_PUTRLF_CMD: case MFC_GETL_CMD: case MFC_GETLB_CMD: case MFC_GETLF_CMD: { return do_dma_list_cmd(cmd, ch_mfc_args); } case MFC_GETLLAR_CMD: // acquire reservation { if (ch_mfc_args.size != 128) { break; } const u32 raddr = VM_CAST(ch_mfc_args.ea); vm::reservation_acquire(vm::get_ptr(offset + ch_mfc_args.lsa), raddr, 128); if (last_raddr) { ch_event_stat |= SPU_EVENT_LR; } last_raddr = raddr; return ch_atomic_stat.set_value(MFC_GETLLAR_SUCCESS); } case MFC_PUTLLC_CMD: // store conditionally { if (ch_mfc_args.size != 128) { break; } if (vm::reservation_update(VM_CAST(ch_mfc_args.ea), vm::get_ptr(offset + ch_mfc_args.lsa), 128)) { if (last_raddr == 0) { throw EXCEPTION("Unexpected: PUTLLC command succeeded, but GETLLAR command not detected"); } last_raddr = 0; return ch_atomic_stat.set_value(MFC_PUTLLC_SUCCESS); } else { if (last_raddr != 0) { ch_event_stat |= SPU_EVENT_LR; last_raddr = 0; } return ch_atomic_stat.set_value(MFC_PUTLLC_FAILURE); } } case MFC_PUTLLUC_CMD: // store unconditionally case MFC_PUTQLLUC_CMD: { if (ch_mfc_args.size != 128) { break; } vm::reservation_op(VM_CAST(ch_mfc_args.ea), 128, [this]() { std::memcpy(vm::priv_ptr(VM_CAST(ch_mfc_args.ea)), vm::get_ptr(offset + ch_mfc_args.lsa), 128); }); if (last_raddr != 0 && vm::g_tls_did_break_reservation) { ch_event_stat |= SPU_EVENT_LR; last_raddr = 0; } if (cmd == MFC_PUTLLUC_CMD) { ch_atomic_stat.set_value(MFC_PUTLLUC_SUCCESS); } return; } } throw EXCEPTION("Unknown command %s (cmd=0x%x, lsa=0x%x, ea=0x%llx, tag=0x%x, size=0x%x)", get_mfc_cmd_name(cmd), cmd, ch_mfc_args.lsa, ch_mfc_args.ea, ch_mfc_args.tag, ch_mfc_args.size); } u32 SPUThread::get_events(bool waiting) { // check reservation status and set SPU_EVENT_LR if lost if (last_raddr != 0 && !vm::reservation_test(get_thread_ctrl())) { ch_event_stat |= SPU_EVENT_LR; last_raddr = 0; } // initialize waiting if (waiting) { // polling with atomically set/removed SPU_EVENT_WAITING flag return ch_event_stat.atomic_op([this](u32& stat) -> u32 { if (u32 res = stat & ch_event_mask) { stat &= ~SPU_EVENT_WAITING; return res; } else { stat |= SPU_EVENT_WAITING; return 0; } }); } // simple polling return ch_event_stat & ch_event_mask; } void SPUThread::set_events(u32 mask) { if (u32 unimpl = mask & ~SPU_EVENT_IMPLEMENTED) { throw EXCEPTION("Unimplemented events (0x%x)", unimpl); } // set new events, get old event mask const u32 old_stat = ch_event_stat._or(mask); // notify if some events were set if (~old_stat & mask && old_stat & SPU_EVENT_WAITING) { std::lock_guard lock(mutex); if (ch_event_stat & SPU_EVENT_WAITING) { cv.notify_one(); } } } void SPUThread::set_interrupt_status(bool enable) { if (enable) { // detect enabling interrupts with events masked if (u32 mask = ch_event_mask) { throw EXCEPTION("SPU Interrupts not implemented (mask=0x%x)", mask); } ch_event_stat |= SPU_EVENT_INTR_ENABLED; } else { ch_event_stat &= ~SPU_EVENT_INTR_ENABLED; } } u32 SPUThread::get_ch_count(u32 ch) { if (Ini.HLELogging.GetValue()) { LOG_NOTICE(SPU, "get_ch_count(ch=%d [%s])", ch, ch < 128 ? spu_ch_name[ch] : "???"); } switch (ch) { //case MFC_Cmd: return 16; //case SPU_WrSRR0: return 1; break; //case SPU_RdSRR0: return 1; break; case SPU_WrOutMbox: return ch_out_mbox.get_count() ^ 1; break; case SPU_WrOutIntrMbox: return ch_out_intr_mbox.get_count() ^ 1; break; case SPU_RdInMbox: return ch_in_mbox.get_count(); break; case MFC_RdTagStat: return ch_tag_stat.get_count(); break; case MFC_RdListStallStat: return ch_stall_stat.get_count(); break; case MFC_WrTagUpdate: return ch_tag_stat.get_count(); break; // hack case SPU_RdSigNotify1: return ch_snr1.get_count(); break; case SPU_RdSigNotify2: return ch_snr2.get_count(); break; case MFC_RdAtomicStat: return ch_atomic_stat.get_count(); break; case SPU_RdEventStat: return get_events() ? 1 : 0; break; } throw EXCEPTION("Unknown/illegal channel (ch=%d [%s])", ch, ch < 128 ? spu_ch_name[ch] : "???"); } u32 SPUThread::get_ch_value(u32 ch) { if (Ini.HLELogging.GetValue()) { LOG_NOTICE(SPU, "get_ch_value(ch=%d [%s])", ch, ch < 128 ? spu_ch_name[ch] : "???"); } auto read_channel = [this](spu_channel_t& channel) -> u32 { std::unique_lock lock(mutex, std::defer_lock); while (true) { bool result; u32 value; std::tie(result, value) = channel.try_pop(); if (result) { return value; } CHECK_EMU_STATUS; if (is_stopped()) throw CPUThreadStop{}; if (!lock) { lock.lock(); continue; } cv.wait(lock); } }; switch (ch) { //case SPU_RdSRR0: // value = SRR0; // break; case SPU_RdInMbox: { std::unique_lock lock(mutex, std::defer_lock); while (true) { bool result; u32 value; u32 count; std::tie(result, value, count) = ch_in_mbox.try_pop(); if (result) { if (count + 1 == 4 /* SPU_IN_MBOX_THRESHOLD */) // TODO: check this { int_ctrl[2].set(SPU_INT2_STAT_SPU_MAILBOX_THRESHOLD_INT); } return value; } CHECK_EMU_STATUS; if (is_stopped()) throw CPUThreadStop{}; if (!lock) { lock.lock(); continue; } cv.wait(lock); } } case MFC_RdTagStat: { return read_channel(ch_tag_stat); } case MFC_RdTagMask: { return ch_tag_mask; } case SPU_RdSigNotify1: { return read_channel(ch_snr1); } case SPU_RdSigNotify2: { return read_channel(ch_snr2); } case MFC_RdAtomicStat: { return read_channel(ch_atomic_stat); } case MFC_RdListStallStat: { return read_channel(ch_stall_stat); } case SPU_RdDec: { return ch_dec_value - (u32)(get_timebased_time() - ch_dec_start_timestamp); } case SPU_RdEventMask: { return ch_event_mask; } case SPU_RdEventStat: { std::unique_lock lock(mutex, std::defer_lock); // start waiting or return immediately if (u32 res = get_events(true)) { return res; } if (ch_event_mask & SPU_EVENT_LR) { // register waiter if polling reservation status is required vm::wait_op(*this, last_raddr, 128, WRAP_EXPR(get_events(true) || is_stopped())); } else { lock.lock(); // simple waiting loop otherwise while (!get_events(true) && !is_stopped()) { CHECK_EMU_STATUS; cv.wait(lock); } } ch_event_stat &= ~SPU_EVENT_WAITING; if (is_stopped()) throw CPUThreadStop{}; return get_events(); } case SPU_RdMachStat: { // HACK: "Not isolated" status // Return SPU Interrupt status in LSB return (ch_event_stat & SPU_EVENT_INTR_ENABLED) != 0; } } throw EXCEPTION("Unknown/illegal channel (ch=%d [%s])", ch, ch < 128 ? spu_ch_name[ch] : "???"); } void SPUThread::set_ch_value(u32 ch, u32 value) { if (Ini.HLELogging.GetValue()) { LOG_NOTICE(SPU, "set_ch_value(ch=%d [%s], value=0x%x)", ch, ch < 128 ? spu_ch_name[ch] : "???", value); } switch (ch) { //case SPU_WrSRR0: // SRR0 = value & 0x3FFFC; //LSLR & ~3 // break; case SPU_WrOutIntrMbox: { if (m_type == CPU_THREAD_RAW_SPU) { std::unique_lock lock(mutex, std::defer_lock); while (!ch_out_intr_mbox.try_push(value)) { CHECK_EMU_STATUS; if (is_stopped()) throw CPUThreadStop{}; if (!lock) { lock.lock(); continue; } cv.wait(lock); } int_ctrl[2].set(SPU_INT2_STAT_MAILBOX_INT); return; } else { const u8 code = value >> 24; if (code < 64) { /* ===== sys_spu_thread_send_event (used by spu_printf) ===== */ LV2_LOCK; const u8 spup = code & 63; if (!ch_out_mbox.get_count()) { throw EXCEPTION("sys_spu_thread_send_event(value=0x%x, spup=%d): Out_MBox is empty", value, spup); } if (u32 count = ch_in_mbox.get_count()) { throw EXCEPTION("sys_spu_thread_send_event(value=0x%x, spup=%d): In_MBox is not empty (count=%d)", value, spup, count); } const u32 data = ch_out_mbox.get_value(); ch_out_mbox.set_value(data, 0); if (Ini.HLELogging.GetValue()) { LOG_NOTICE(SPU, "sys_spu_thread_send_event(spup=%d, data0=0x%x, data1=0x%x)", spup, value & 0x00ffffff, data); } const auto queue = this->spup[spup].lock(); if (!queue) { LOG_WARNING(SPU, "sys_spu_thread_send_event(spup=%d, data0=0x%x, data1=0x%x): event queue not connected", spup, (value & 0x00ffffff), data); return ch_in_mbox.set_values(1, CELL_ENOTCONN); // TODO: check error passing } if (queue->events.size() >= queue->size) { return ch_in_mbox.set_values(1, CELL_EBUSY); } queue->push(lv2_lock, SYS_SPU_THREAD_EVENT_USER_KEY, m_id, ((u64)spup << 32) | (value & 0x00ffffff), data); return ch_in_mbox.set_values(1, CELL_OK); } else if (code < 128) { /* ===== sys_spu_thread_throw_event ===== */ LV2_LOCK; const u8 spup = code & 63; if (!ch_out_mbox.get_count()) { throw EXCEPTION("sys_spu_thread_throw_event(value=0x%x, spup=%d): Out_MBox is empty", value, spup); } const u32 data = ch_out_mbox.get_value(); ch_out_mbox.set_value(data, 0); if (Ini.HLELogging.GetValue()) { LOG_WARNING(SPU, "sys_spu_thread_throw_event(spup=%d, data0=0x%x, data1=0x%x)", spup, value & 0x00ffffff, data); } const auto queue = this->spup[spup].lock(); if (!queue) { LOG_WARNING(SPU, "sys_spu_thread_throw_event(spup=%d, data0=0x%x, data1=0x%x): event queue not connected", spup, (value & 0x00ffffff), data); return; } // TODO: check passing spup value if (queue->events.size() >= queue->size) { LOG_WARNING(SPU, "sys_spu_thread_throw_event(spup=%d, data0=0x%x, data1=0x%x) failed (queue is full)", spup, (value & 0x00ffffff), data); return; } queue->push(lv2_lock, SYS_SPU_THREAD_EVENT_USER_KEY, m_id, ((u64)spup << 32) | (value & 0x00ffffff), data); return; } else if (code == 128) { /* ===== sys_event_flag_set_bit ===== */ LV2_LOCK; const u32 flag = value & 0xffffff; if (!ch_out_mbox.get_count()) { throw EXCEPTION("sys_event_flag_set_bit(value=0x%x (flag=%d)): Out_MBox is empty", value, flag); } if (u32 count = ch_in_mbox.get_count()) { throw EXCEPTION("sys_event_flag_set_bit(value=0x%x (flag=%d)): In_MBox is not empty (%d)", value, flag, count); } const u32 data = ch_out_mbox.get_value(); ch_out_mbox.set_value(data, 0); if (flag > 63) { throw EXCEPTION("sys_event_flag_set_bit(id=%d, value=0x%x (flag=%d)): Invalid flag", data, value, flag); } if (Ini.HLELogging.GetValue()) { LOG_WARNING(SPU, "sys_event_flag_set_bit(id=%d, value=0x%x (flag=%d))", data, value, flag); } const auto eflag = idm::get(data); if (!eflag) { return ch_in_mbox.set_values(1, CELL_ESRCH); } const u64 bitptn = 1ull << flag; if (~eflag->pattern.fetch_or(bitptn) & bitptn) { // notify if the bit was set eflag->notify_all(lv2_lock); } return ch_in_mbox.set_values(1, CELL_OK); } else if (code == 192) { /* ===== sys_event_flag_set_bit_impatient ===== */ LV2_LOCK; const u32 flag = value & 0xffffff; if (!ch_out_mbox.get_count()) { throw EXCEPTION("sys_event_flag_set_bit_impatient(value=0x%x (flag=%d)): Out_MBox is empty", value, flag); } const u32 data = ch_out_mbox.get_value(); ch_out_mbox.set_value(data, 0); if (flag > 63) { throw EXCEPTION("sys_event_flag_set_bit_impatient(id=%d, value=0x%x (flag=%d)): Invalid flag", data, value, flag); } if (Ini.HLELogging.GetValue()) { LOG_WARNING(SPU, "sys_event_flag_set_bit_impatient(id=%d, value=0x%x (flag=%d))", data, value, flag); } const auto eflag = idm::get(data); if (!eflag) { return; } const u64 bitptn = 1ull << flag; if (~eflag->pattern.fetch_or(bitptn) & bitptn) { // notify if the bit was set eflag->notify_all(lv2_lock); } return; } else { if (ch_out_mbox.get_count()) { throw EXCEPTION("SPU_WrOutIntrMbox: unknown data (value=0x%x); Out_MBox = 0x%x", value, ch_out_mbox.get_value()); } else { throw EXCEPTION("SPU_WrOutIntrMbox: unknown data (value=0x%x)", value); } } } } case SPU_WrOutMbox: { std::unique_lock lock(mutex, std::defer_lock); while (!ch_out_mbox.try_push(value)) { CHECK_EMU_STATUS; if (is_stopped()) throw CPUThreadStop{}; if (!lock) { lock.lock(); continue; } cv.wait(lock); } return; } case MFC_WrTagMask: { ch_tag_mask = value; return; } case MFC_WrTagUpdate: { ch_tag_stat.set_value(ch_tag_mask); // hack return; } case MFC_LSA: { if (value >= 0x40000) { break; } ch_mfc_args.lsa = value; return; } case MFC_EAH: { ch_mfc_args.eah = value; return; } case MFC_EAL: { ch_mfc_args.eal = value; return; } case MFC_Size: { if (value > 16 * 1024) { break; } ch_mfc_args.size = (u16)value; return; } case MFC_TagID: { if (value >= 32) { break; } ch_mfc_args.tag = (u16)value; return; } case MFC_Cmd: { process_mfc_cmd(value); ch_mfc_args = {}; // clear non-persistent data return; } case MFC_WrListStallAck: { if (value >= 32) { break; } size_t processed = 0; for (size_t i = 0; i < mfc_queue.size(); i++) { if (mfc_queue[i].second.tag == value) { do_dma_list_cmd(mfc_queue[i].first, mfc_queue[i].second); mfc_queue[i].second.tag = 0xdead; processed++; } } while (processed) { for (size_t i = 0; i < mfc_queue.size(); i++) { if (mfc_queue[i].second.tag == 0xdead) { mfc_queue.erase(mfc_queue.begin() + i); processed--; break; } } } return; } case SPU_WrDec: { ch_dec_start_timestamp = get_timebased_time(); ch_dec_value = value; return; } case SPU_WrEventMask: { // detect masking events with enabled interrupt status if (value && ch_event_stat & SPU_EVENT_INTR_ENABLED) { throw EXCEPTION("SPU Interrupts not implemented (mask=0x%x)", value); } // detect masking unimplemented events if (value & ~SPU_EVENT_IMPLEMENTED) { break; } ch_event_mask = value; return; } case SPU_WrEventAck: { if (value & ~SPU_EVENT_IMPLEMENTED) { break; } ch_event_stat &= ~value; return; } } throw EXCEPTION("Unknown/illegal channel (ch=%d [%s], value=0x%x)", ch, ch < 128 ? spu_ch_name[ch] : "???", value); } void SPUThread::stop_and_signal(u32 code) { if (Ini.HLELogging.GetValue()) { LOG_NOTICE(SPU, "stop_and_signal(code=0x%x)", code); } if (m_type == CPU_THREAD_RAW_SPU) { status.atomic_op([code](u32& status) { status = (status & 0xffff) | (code << 16); status |= SPU_STATUS_STOPPED_BY_STOP; status &= ~SPU_STATUS_RUNNING; }); int_ctrl[2].set(SPU_INT2_STAT_SPU_STOP_AND_SIGNAL_INT); return stop(); } switch (code) { case 0x001: { std::this_thread::sleep_for(std::chrono::milliseconds(1)); // hack return; } case 0x002: { m_state |= CPU_STATE_RETURN; return; } case 0x003: { const auto found = m_addr_to_hle_function_map.find(pc); if (found == m_addr_to_hle_function_map.end()) { throw EXCEPTION("HLE function not registered (PC=0x%05x)", pc); } if (const auto return_to_caller = found->second(*this)) { pc = (gpr[0]._u32[3] & 0x3fffc) - 4; } return; } case 0x110: { /* ===== sys_spu_thread_receive_event ===== */ LV2_LOCK; if (!ch_out_mbox.get_count()) { throw EXCEPTION("sys_spu_thread_receive_event(): Out_MBox is empty"); } if (u32 count = ch_in_mbox.get_count()) { LOG_ERROR(SPU, "sys_spu_thread_receive_event(): In_MBox is not empty (%d)", count); return ch_in_mbox.set_values(1, CELL_EBUSY); } const u32 spuq = ch_out_mbox.get_value(); ch_out_mbox.set_value(spuq, 0); if (Ini.HLELogging.GetValue()) { LOG_NOTICE(SPU, "sys_spu_thread_receive_event(spuq=0x%x)", spuq); } const auto group = tg.lock(); if (!group) { throw EXCEPTION("Invalid SPU Thread Group"); } if (group->type & SYS_SPU_THREAD_GROUP_TYPE_EXCLUSIVE_NON_CONTEXT) // this check may be inaccurate { return ch_in_mbox.set_values(1, CELL_EINVAL); } std::shared_ptr queue; for (auto& v : this->spuq) { if (spuq == v.first) { queue = v.second.lock(); if (queue) { break; } } } if (!queue) { return ch_in_mbox.set_values(1, CELL_EINVAL); // TODO: check error value } // check thread group status while (group->state >= SPU_THREAD_GROUP_STATUS_WAITING && group->state <= SPU_THREAD_GROUP_STATUS_SUSPENDED) { CHECK_EMU_STATUS; if (is_stopped()) throw CPUThreadStop{}; group->cv.wait_for(lv2_lock, std::chrono::milliseconds(1)); } // change group status if (group->state == SPU_THREAD_GROUP_STATUS_RUNNING) { group->state = SPU_THREAD_GROUP_STATUS_WAITING; for (auto& thread : group->threads) { if (thread) thread->sleep(); // trigger status check } } else { throw EXCEPTION("Unexpected SPU Thread Group state (%d)", group->state); } if (queue->events.size()) { auto& event = queue->events.front(); ch_in_mbox.set_values(4, CELL_OK, static_cast(std::get<1>(event)), static_cast(std::get<2>(event)), static_cast(std::get<3>(event))); queue->events.pop_front(); } else { // add waiter; protocol is ignored in current implementation sleep_queue_entry_t waiter(*this, queue->sq); // wait on the event queue while (!unsignal()) { CHECK_EMU_STATUS; if (is_stopped()) throw CPUThreadStop{}; cv.wait(lv2_lock); } // event data must be set by push() } // restore thread group status if (group->state == SPU_THREAD_GROUP_STATUS_WAITING) { group->state = SPU_THREAD_GROUP_STATUS_RUNNING; } else if (group->state == SPU_THREAD_GROUP_STATUS_WAITING_AND_SUSPENDED) { group->state = SPU_THREAD_GROUP_STATUS_SUSPENDED; } else { throw EXCEPTION("Unexpected SPU Thread Group state (%d)", group->state); } for (auto& thread : group->threads) { if (thread) thread->awake(); // untrigger status check } group->cv.notify_all(); return; } case 0x101: { /* ===== sys_spu_thread_group_exit ===== */ LV2_LOCK; if (!ch_out_mbox.get_count()) { throw EXCEPTION("sys_spu_thread_group_exit(): Out_MBox is empty"); } const u32 value = ch_out_mbox.get_value(); ch_out_mbox.set_value(value, 0); if (Ini.HLELogging.GetValue()) { LOG_NOTICE(SPU, "sys_spu_thread_group_exit(status=0x%x)", value); } const auto group = tg.lock(); if (!group) { throw EXCEPTION("Invalid SPU Thread Group"); } for (auto& thread : group->threads) { if (thread && thread.get() != this) { thread->stop(); } } group->state = SPU_THREAD_GROUP_STATUS_INITIALIZED; group->exit_status = value; group->join_state |= SPU_TGJSF_GROUP_EXIT; group->cv.notify_one(); return stop(); } case 0x102: { /* ===== sys_spu_thread_exit ===== */ LV2_LOCK; if (!ch_out_mbox.get_count()) { throw EXCEPTION("sys_spu_thread_exit(): Out_MBox is empty"); } if (Ini.HLELogging.GetValue()) { LOG_NOTICE(SPU, "sys_spu_thread_exit(status=0x%x)", ch_out_mbox.get_value()); } const auto group = tg.lock(); if (!group) { throw EXCEPTION("Invalid SPU Thread Group"); } status |= SPU_STATUS_STOPPED_BY_STOP; group->cv.notify_one(); return stop(); } } if (!ch_out_mbox.get_count()) { throw EXCEPTION("Unknown STOP code: 0x%x (Out_MBox is empty)", code); } else { throw EXCEPTION("Unknown STOP code: 0x%x (Out_MBox=0x%x)", code, ch_out_mbox.get_value()); } } void SPUThread::halt() { if (Ini.HLELogging.GetValue()) { LOG_NOTICE(SPU, "halt()"); } if (m_type == CPU_THREAD_RAW_SPU) { status.atomic_op([](u32& status) { status |= SPU_STATUS_STOPPED_BY_HALT; status &= ~SPU_STATUS_RUNNING; }); int_ctrl[2].set(SPU_INT2_STAT_SPU_HALT_OR_STEP_INT); return stop(); } status |= SPU_STATUS_STOPPED_BY_HALT; throw EXCEPTION("Halt"); } spu_thread::spu_thread(u32 entry, const std::string& name, u32 stack_size, u32 prio) { auto spu = idm::make_ptr(name, 0x13370666); spu->pc = entry; thread = std::move(spu); }