#include "stdafx.h" #include "Utilities/Log.h" #include "Memory.h" #include "Emu/System.h" #include "Emu/CPU/CPUThread.h" #include "Emu/Cell/PPUThread.h" #include "Emu/ARMv7/ARMv7Thread.h" #include "Emu/SysCalls/lv2/sys_time.h" #ifdef _WIN32 #include #else #include #include #include /* OS X uses MAP_ANON instead of MAP_ANONYMOUS */ #ifndef MAP_ANONYMOUS #define MAP_ANONYMOUS MAP_ANON #endif #endif namespace vm { #ifdef _WIN32 HANDLE g_memory_handle; #else int g_memory_handle; #endif void* g_priv_addr; void* initialize() { #ifdef _WIN32 g_memory_handle = CreateFileMapping(INVALID_HANDLE_VALUE, NULL, PAGE_READWRITE | SEC_RESERVE, 0x1, 0x0, NULL); void* base_addr = MapViewOfFile(g_memory_handle, PAGE_NOACCESS, 0, 0, 0x100000000); // main memory g_priv_addr = MapViewOfFile(g_memory_handle, PAGE_NOACCESS, 0, 0, 0x100000000); // memory mirror for privileged access return base_addr; //return VirtualAlloc(nullptr, 0x100000000, MEM_RESERVE, PAGE_NOACCESS); #else g_memory_handle = shm_open("/rpcs3_vm", O_RDWR, 0); void* base_addr = mmap(nullptr, 0x100000000, PROT_NONE, MAP_PRIVATE, g_memory_handle, 0); g_priv_addr = mmap(nullptr, 0x100000000, PROT_NONE, MAP_PRIVATE, g_memory_handle, 0); return base_addr; //return mmap(nullptr, 0x100000000, PROT_NONE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0); #endif } void finalize() { #ifdef _WIN32 UnmapViewOfFile(g_base_addr); UnmapViewOfFile(g_priv_addr); CloseHandle(g_memory_handle); #else munmap(g_base_addr, 0x100000000); munmap(g_priv_addr, 0x100000000); shm_unlink("/rpcs3_vm"); #endif } void* const g_base_addr = (atexit(finalize), initialize()); class reservation_mutex_t { std::atomic m_owner; std::condition_variable m_cv; std::atomic test; std::mutex m_cv_mutex; public: reservation_mutex_t() : m_owner(nullptr) , test(0) { } bool do_notify; __noinline void lock() { NamedThreadBase* owner = GetCurrentNamedThread(); NamedThreadBase* old = nullptr; while (!m_owner.compare_exchange_strong(old, owner)) { std::unique_lock cv_lock(m_cv_mutex); m_cv.wait_for(cv_lock, std::chrono::milliseconds(1)); if (old == owner) { throw __FUNCTION__; } old = nullptr; } do_notify = true; test++; assert(test == 1); } __noinline void unlock() { assert(test == 1); test--; NamedThreadBase* owner = GetCurrentNamedThread(); if (!m_owner.compare_exchange_strong(owner, nullptr)) { throw __FUNCTION__; } if (do_notify) { m_cv.notify_one(); } } }; std::function g_reservation_cb = nullptr; NamedThreadBase* g_reservation_owner = nullptr; u32 g_reservation_addr = 0; reservation_mutex_t g_reservation_mutex; void _reservation_set(u32 addr) { //const auto stamp0 = get_time(); #ifdef _WIN32 DWORD old; if (!VirtualProtect(vm::get_ptr(addr & ~0xfff), 4096, PAGE_READONLY, &old)) #else if (!::mprotect(vm::get_ptr(addr & ~0xfff), 4096, PROT_READ)) #endif { throw fmt::format("vm::_reservation_set() failed (addr=0x%x)", addr); } //LOG_NOTICE(MEMORY, "VirtualProtect: %f us", (get_time() - stamp0) / 80.f); } bool _reservation_break(u32 addr) { if (g_reservation_addr >> 12 == addr >> 12) { //const auto stamp0 = get_time(); #ifdef _WIN32 if (!VirtualAlloc(vm::get_ptr(addr & ~0xfff), 4096, MEM_COMMIT, PAGE_READWRITE)) #else if (!::mprotect(vm::get_ptr(addr & ~0xfff), 4096, PROT_READ | PROT_WRITE)) #endif { throw fmt::format("vm::_reservation_break() failed (addr=0x%x)", addr); } //LOG_NOTICE(MEMORY, "VirtualAlloc: %f us", (get_time() - stamp0) / 80.f); if (g_reservation_cb) { g_reservation_cb(); g_reservation_cb = nullptr; } g_reservation_owner = nullptr; g_reservation_addr = 0; return true; } return false; } bool reservation_break(u32 addr) { std::lock_guard lock(g_reservation_mutex); return _reservation_break(addr); } bool reservation_acquire(void* data, u32 addr, u32 size, const std::function& callback) { const auto stamp0 = get_time(); bool broken = false; assert(size == 1 || size == 2 || size == 4 || size == 8 || size == 128); assert((addr + size & ~0xfff) == (addr & ~0xfff)); { std::lock_guard lock(g_reservation_mutex); // silent unlocking to prevent priority boost for threads going to break reservation g_reservation_mutex.do_notify = false; // break previous reservation if (g_reservation_addr) { broken = _reservation_break(g_reservation_addr); } // change memory protection to read-only _reservation_set(addr); // set additional information g_reservation_addr = addr; g_reservation_owner = GetCurrentNamedThread(); g_reservation_cb = callback; // copy data memcpy(data, vm::get_ptr(addr), size); } return broken; } bool reservation_update(u32 addr, const void* data, u32 size) { assert(size == 1 || size == 2 || size == 4 || size == 8 || size == 128); assert((addr + size & ~0xfff) == (addr & ~0xfff)); std::lock_guard lock(g_reservation_mutex); if (g_reservation_addr != addr || g_reservation_owner != GetCurrentNamedThread()) { // atomic update failed return false; } // update memory using privileged access memcpy(vm::get_priv_ptr(addr), data, size); // free the reservation and restore memory protection _reservation_break(addr); // atomic update succeeded return true; } bool reservation_query(u32 addr) { std::lock_guard lock(g_reservation_mutex); { LV2_LOCK(0); if (!Memory.IsGoodAddr(addr)) { return false; } } // break the reservation _reservation_break(addr); return true; } void reservation_free() { std::lock_guard lock(g_reservation_mutex); if (g_reservation_owner == GetCurrentNamedThread()) { _reservation_break(g_reservation_addr); } } void reservation_op(u32 addr, u32 size, std::function proc) { assert(size == 1 || size == 2 || size == 4 || size == 8 || size == 128); assert((addr + size & ~0xfff) == (addr & ~0xfff)); std::lock_guard lock(g_reservation_mutex); // break previous reservation if (g_reservation_addr) { _reservation_break(g_reservation_addr); } // change memory protection to read-only _reservation_set(addr); // set additional information g_reservation_addr = addr; g_reservation_owner = GetCurrentNamedThread(); g_reservation_cb = nullptr; // do the operation proc(); // remove the reservation _reservation_break(addr); } bool check_addr(u32 addr) { // Checking address before using it is unsafe. // The only safe way to check it is to protect both actions (checking and using) with mutex that is used for mapping/allocation. return false; } //TODO bool map(u32 addr, u32 size, u32 flags) { return Memory.Map(addr, size); } bool unmap(u32 addr, u32 size, u32 flags) { return Memory.Unmap(addr); } u32 alloc(u32 addr, u32 size, memory_location location) { return g_locations[location].fixed_allocator(addr, size); } u32 alloc(u32 size, memory_location location) { return g_locations[location].allocator(size); } void dealloc(u32 addr, memory_location location) { return g_locations[location].deallocator(addr); } u32 get_addr(const void* real_pointer) { const u64 diff = (u64)real_pointer - (u64)g_base_addr; const u32 res = (u32)diff; if (res == diff) { return res; } if (real_pointer) { throw fmt::format("vm::get_addr(0x%016llx) failed: not a part of virtual memory", (u64)real_pointer); } return 0; } void error(const u64 addr, const char* func) { throw fmt::format("%s(): failed to cast 0x%llx (too big value)", func, addr); } namespace ps3 { u32 main_alloc(u32 size) { return Memory.MainMem.AllocAlign(size, 1); } u32 main_fixed_alloc(u32 addr, u32 size) { return Memory.MainMem.AllocFixed(addr, size) ? addr : 0; } void main_dealloc(u32 addr) { Memory.MainMem.Free(addr); } u32 g_stack_offset = 0; u32 stack_alloc(u32 size) { return Memory.StackMem.AllocAlign(size, 0x10); } u32 stack_fixed_alloc(u32 addr, u32 size) { return Memory.StackMem.AllocFixed(addr, size) ? addr : 0; } void stack_dealloc(u32 addr) { Memory.StackMem.Free(addr); } u32 sprx_alloc(u32 size) { return Memory.SPRXMem.AllocAlign(size, 1); } u32 sprx_fixed_alloc(u32 addr, u32 size) { return Memory.SPRXMem.AllocFixed(Memory.SPRXMem.GetStartAddr() + addr, size) ? Memory.SPRXMem.GetStartAddr() + addr : 0; } void sprx_dealloc(u32 addr) { Memory.SPRXMem.Free(addr); } u32 user_space_alloc(u32 size) { return Memory.PRXMem.AllocAlign(size, 1); } u32 user_space_fixed_alloc(u32 addr, u32 size) { return Memory.PRXMem.AllocFixed(addr, size) ? addr : 0; } void user_space_dealloc(u32 addr) { Memory.PRXMem.Free(addr); } void init() { Memory.Init(Memory_PS3); } } namespace psv { void init() { Memory.Init(Memory_PSV); } } namespace psp { void init() { Memory.Init(Memory_PSP); } } location_info g_locations[memory_location_count] = { { 0x00010000, 0x2FFF0000, ps3::main_alloc, ps3::main_fixed_alloc, ps3::main_dealloc }, { 0xD0000000, 0x10000000, ps3::stack_alloc, ps3::stack_fixed_alloc, ps3::stack_dealloc }, //remove me { 0x00010000, 0x2FFF0000, ps3::sprx_alloc, ps3::sprx_fixed_alloc, ps3::sprx_dealloc }, { 0x30000000, 0x10000000, ps3::user_space_alloc, ps3::user_space_fixed_alloc, ps3::user_space_dealloc }, }; void close() { Memory.Close(); } u32 stack_push(CPUThread& CPU, u32 size, u32 align_v, u32& old_pos) { assert(align_v); switch (CPU.GetType()) { case CPU_THREAD_PPU: { PPUThread& PPU = static_cast(CPU); old_pos = (u32)PPU.GPR[1]; PPU.GPR[1] -= align(size, 8); // room minimal possible size PPU.GPR[1] &= ~(align_v - 1); // fix stack alignment if (PPU.GPR[1] < CPU.GetStackAddr()) { // stack overflow PPU.GPR[1] = old_pos; return 0; } else { return (u32)PPU.GPR[1]; } } case CPU_THREAD_SPU: case CPU_THREAD_RAW_SPU: { assert(!"stack_push(): SPU not supported"); return 0; } case CPU_THREAD_ARMv7: { ARMv7Context& context = static_cast(CPU).context; old_pos = context.SP; context.SP -= align(size, 4); // room minimal possible size context.SP &= ~(align_v - 1); // fix stack alignment if (context.SP < CPU.GetStackAddr()) { // stack overflow context.SP = old_pos; return 0; } else { return context.SP; } } default: { assert(!"stack_push(): invalid thread type"); return 0; } } } void stack_pop(CPUThread& CPU, u32 addr, u32 old_pos) { switch (CPU.GetType()) { case CPU_THREAD_PPU: { PPUThread& PPU = static_cast(CPU); assert(PPU.GPR[1] == addr); PPU.GPR[1] = old_pos; return; } case CPU_THREAD_SPU: case CPU_THREAD_RAW_SPU: { assert(!"stack_pop(): SPU not supported"); return; } case CPU_THREAD_ARMv7: { ARMv7Context& context = static_cast(CPU).context; assert(context.SP == addr); context.SP = old_pos; return; } default: { assert(!"stack_pop(): invalid thread type"); return; } } } }