#pragma once #include "PPCThread.h" #include "Emu/event.h" #include "Emu/SysCalls/lv2/SC_SPU_Thread.h" #include "MFC.h" #include static const char* spu_reg_name[128] = { "$LR", "$SP", "$2", "$3", "$4", "$5", "$6", "$7", "$8", "$9", "$10", "$11", "$12", "$13", "$14", "$15", "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23", "$24", "$25", "$26", "$27", "$28", "$29", "$30", "$31", "$32", "$33", "$34", "$35", "$36", "$37", "$38", "$39", "$40", "$41", "$42", "$43", "$44", "$45", "$46", "$47", "$48", "$49", "$50", "$51", "$52", "$53", "$54", "$55", "$56", "$57", "$58", "$59", "$60", "$61", "$62", "$63", "$64", "$65", "$66", "$67", "$68", "$69", "$70", "$71", "$72", "$73", "$74", "$75", "$76", "$77", "$78", "$79", "$80", "$81", "$82", "$83", "$84", "$85", "$86", "$87", "$88", "$89", "$90", "$91", "$92", "$93", "$94", "$95", "$96", "$97", "$98", "$99", "$100", "$101", "$102", "$103", "$104", "$105", "$106", "$107", "$108", "$109", "$110", "$111", "$112", "$113", "$114", "$115", "$116", "$117", "$118", "$119", "$120", "$121", "$122", "$123", "$124", "$125", "$126", "$127", }; //SPU reg $0 is a dummy reg, and is used for certain instructions. static const char* spu_specialreg_name[128] = { "$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", "$8", "$9", "$10", "$11", "$12", "$13", "$14", "$15", "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23", "$24", "$25", "$26", "$27", "$28", "$29", "$30", "$31", "$32", "$33", "$34", "$35", "$36", "$37", "$38", "$39", "$40", "$41", "$42", "$43", "$44", "$45", "$46", "$47", "$48", "$49", "$50", "$51", "$52", "$53", "$54", "$55", "$56", "$57", "$58", "$59", "$60", "$61", "$62", "$63", "$64", "$65", "$66", "$67", "$68", "$69", "$70", "$71", "$72", "$73", "$74", "$75", "$76", "$77", "$78", "$79", "$80", "$81", "$82", "$83", "$84", "$85", "$86", "$87", "$88", "$89", "$90", "$91", "$92", "$93", "$94", "$95", "$96", "$97", "$98", "$99", "$100", "$101", "$102", "$103", "$104", "$105", "$106", "$107", "$108", "$109", "$110", "$111", "$112", "$113", "$114", "$115", "$116", "$117", "$118", "$119", "$120", "$121", "$122", "$123", "$124", "$125", "$126", "$127", }; static const char* spu_ch_name[128] = { "$SPU_RdEventStat", "$SPU_WrEventMask", "$SPU_WrEventAck", "$SPU_RdSigNotify1", "$SPU_RdSigNotify2", "$ch5", "$ch6", "$SPU_WrDec", "$SPU_RdDec", "$MFC_WrMSSyncReq", "$ch10", "$SPU_RdEventMask", "$MFC_RdTagMask", "$SPU_RdMachStat", "$SPU_WrSRR0", "$SPU_RdSRR0", "$MFC_LSA", "$MFC_EAH", "$MFC_EAL", "$MFC_Size", "$MFC_TagID", "$MFC_Cmd", "$MFC_WrTagMask", "$MFC_WrTagUpdate", "$MFC_RdTagStat", "$MFC_RdListStallStat", "$MFC_WrListStallAck", "$MFC_RdAtomicStat", "$SPU_WrOutMbox", "$SPU_RdInMbox", "$SPU_WrOutIntrMbox", "$ch31", "$ch32", "$ch33", "$ch34", "$ch35", "$ch36", "$ch37", "$ch38", "$ch39", "$ch40", "$ch41", "$ch42", "$ch43", "$ch44", "$ch45", "$ch46", "$ch47", "$ch48", "$ch49", "$ch50", "$ch51", "$ch52", "$ch53", "$ch54", "$ch55", "$ch56", "$ch57", "$ch58", "$ch59", "$ch60", "$ch61", "$ch62", "$ch63", "$ch64", "$ch65", "$ch66", "$ch67", "$ch68", "$ch69", "$ch70", "$ch71", "$ch72", "$ch73", "$ch74", "$ch75", "$ch76", "$ch77", "$ch78", "$ch79", "$ch80", "$ch81", "$ch82", "$ch83", "$ch84", "$ch85", "$ch86", "$ch87", "$ch88", "$ch89", "$ch90", "$ch91", "$ch92", "$ch93", "$ch94", "$ch95", "$ch96", "$ch97", "$ch98", "$ch99", "$ch100", "$ch101", "$ch102", "$ch103", "$ch104", "$ch105", "$ch106", "$ch107", "$ch108", "$ch109", "$ch110", "$ch111", "$ch112", "$ch113", "$ch114", "$ch115", "$ch116", "$ch117", "$ch118", "$ch119", "$ch120", "$ch121", "$ch122", "$ch123", "$ch124", "$ch125", "$ch126", "$ch127", }; enum SPUchannels { SPU_RdEventStat = 0, //Read event status with mask applied SPU_WrEventMask = 1, //Write event mask SPU_WrEventAck = 2, //Write end of event processing SPU_RdSigNotify1 = 3, //Signal notification 1 SPU_RdSigNotify2 = 4, //Signal notification 2 SPU_WrDec = 7, //Write decrementer count SPU_RdDec = 8, //Read decrementer count SPU_RdEventMask = 11, //Read event mask SPU_RdMachStat = 13, //Read SPU run status SPU_WrSRR0 = 14, //Write SPU machine state save/restore register 0 (SRR0) SPU_RdSRR0 = 15, //Read SPU machine state save/restore register 0 (SRR0) SPU_WrOutMbox = 28, //Write outbound mailbox contents SPU_RdInMbox = 29, //Read inbound mailbox contents SPU_WrOutIntrMbox = 30, //Write outbound interrupt mailbox contents (interrupting PPU) }; enum MFCchannels { MFC_WrMSSyncReq = 9, //Write multisource synchronization request MFC_RdTagMask = 12, //Read tag mask MFC_LSA = 16, //Write local memory address command parameter MFC_EAH = 17, //Write high order DMA effective address command parameter MFC_EAL = 18, //Write low order DMA effective address command parameter MFC_Size = 19, //Write DMA transfer size command parameter MFC_TagID = 20, //Write tag identifier command parameter MFC_Cmd = 21, //Write and enqueue DMA command with associated class ID MFC_WrTagMask = 22, //Write tag mask MFC_WrTagUpdate = 23, //Write request for conditional or unconditional tag status update MFC_RdTagStat = 24, //Read tag status with mask applied MFC_RdListStallStat = 25, //Read DMA list stall-and-notify status MFC_WrListStallAck = 26, //Write DMA list stall-and-notify acknowledge MFC_RdAtomicStat = 27, //Read completion status of last completed immediate MFC atomic update command }; enum { SPU_RUNCNTL_STOP = 0, SPU_RUNCNTL_RUNNABLE = 1, }; enum { SPU_STATUS_STOPPED = 0x0, SPU_STATUS_RUNNING = 0x1, SPU_STATUS_STOPPED_BY_STOP = 0x2, SPU_STATUS_STOPPED_BY_HALT = 0x4, SPU_STATUS_WAITING_FOR_CHANNEL = 0x8, SPU_STATUS_SINGLE_STEP = 0x10, }; enum : u32 { SYS_SPU_THREAD_BASE_LOW = 0xf0000000, SYS_SPU_THREAD_BASE_MASK = 0xfffffff, SYS_SPU_THREAD_OFFSET = 0x00100000, SYS_SPU_THREAD_SNR1 = 0x05400c, SYS_SPU_THREAD_SNR2 = 0x05C00c, }; //Floating point status and control register. Unsure if this is one of the GPRs or SPRs //Is 128 bits, but bits 0-19, 24-28, 32-49, 56-60, 64-81, 88-92, 96-115, 120-124 are unused class FPSCR { public: u64 low; u64 hi; FPSCR() {} wxString ToString() const { return "FPSCR writer not yet implemented"; //wxString::Format("%08x%08x%08x%08x", _u32[3], _u32[2], _u32[1], _u32[0]); } void Reset() { memset(this, 0, sizeof(*this)); } //slice -> 0 - 1 (4 slices total, only two have rounding) //0 -> round even //1 -> round towards zero (truncate) //2 -> round towards positive inf //3 -> round towards neg inf void setSliceRounding(u8 slice, u8 roundTo) { u64 mask = roundTo; switch(slice) { case 0: mask = mask << 20; break; case 1: mask = mask << 22; break; } //rounding is located in the low end of the FPSCR this->low = this->low & mask; } //Slice 0 or 1 u8 checkSliceRounding(u8 slice) { switch(slice) { case 0: return this->low >> 20 & 0x3; case 1: return this->low >> 22 & 0x3; } } //Single Precision Exception Flags (all 3 slices) //slice -> slice number (0-3) //exception: 1 -> Overflow 2 -> Underflow 4-> Diff (could be IE^3 non compliant) void setSinglePrecisionExceptionFlags(u8 slice, u8 exception) { u64 mask = exception; switch(slice) { case 0: mask = mask << 29; this->low = this->low & mask; break; case 1: mask = mask << 61; this->low = this->low & mask; break; case 2: mask = mask << 29; this->hi = this->hi & mask; break; case 3: mask = mask << 61; this->hi = this->hi & mask; break; } } }; union SPU_GPR_hdr { u128 _u128; s128 _i128; __m128 _m128; __m128i _m128i; u64 _u64[2]; s64 _i64[2]; u32 _u32[4]; s32 _i32[4]; u16 _u16[8]; s16 _i16[8]; u8 _u8[16]; s8 _i8[16]; double _d[2]; float _f[4]; SPU_GPR_hdr() {} wxString ToString() const { return wxString::Format("%08x%08x%08x%08x", _u32[3], _u32[2], _u32[1], _u32[0]); } void Reset() { memset(this, 0, sizeof(*this)); } }; union SPU_SPR_hdr { u128 _u128; s128 _i128; u32 _u32[4]; SPU_SPR_hdr() {} wxString ToString() const { return wxString::Format("%08x%08x%08x%08x", _u32[3], _u32[2], _u32[1], _u32[0]); } void Reset() { memset(this, 0, sizeof(*this)); } }; union SPU_SNRConfig_hdr { u64 value; SPU_SNRConfig_hdr() {} wxString ToString() const { return wxString::Format("%01x", value); } void Reset() { memset(this, 0, sizeof(*this)); } }; class SPUThread : public PPCThread { public: SPU_GPR_hdr GPR[128]; //General-Purpose Register SPU_SPR_hdr SPR[128]; //Special-Purpose Registers FPSCR FPSCR; SPU_SNRConfig_hdr cfg; //Signal Notification Registers Configuration (OR-mode enabled: 0x1 for SNR1, 0x2 for SNR2) EventPort SPUPs[64]; // SPU Thread Event Ports EventManager SPUQs; // SPU Queue Mapping SpuGroupInfo* group; // associated SPU Thread Group (null for raw spu) template class Channel { public: static const size_t max_count = _max_count; #ifdef _M_X64 static const bool x86 = false; #else static const bool x86 = true; #endif private: union _CRT_ALIGN(8) { struct { volatile u32 m_index; u32 m_value[max_count]; }; volatile u64 m_indval; }; std::mutex m_lock; public: Channel() { Init(); } void Init() { m_index = 0; } __forceinline bool Pop(u32& res) { if (max_count > 1 || x86) { std::lock_guard lock(m_lock); if(!m_index) { return false; } res = m_value[0]; for (u32 i = 1; i < max_count; i++) // FIFO { m_value[i-1] = m_value[i]; } m_value[max_count-1] = 0; m_index--; return true; } else { //lock-free if ((m_indval & 0xffffffff) == 0) return false; else { res = (m_indval >> 32); m_indval = 0; return true; } } } __forceinline bool Push(u32 value) { if (max_count > 1 || x86) { std::lock_guard lock(m_lock); if(m_index >= max_count) { return false; } m_value[m_index++] = value; return true; } else { //lock-free if (m_indval & 0xffffffff) return false; else { const u64 new_value = ((u64)value << 32) | 1; m_indval = new_value; return true; } } } __forceinline void PushUncond(u32 value) { if (max_count > 1 || x86) { std::lock_guard lock(m_lock); if(m_index >= max_count) m_value[max_count-1] = value; //last message is overwritten else m_value[m_index++] = value; } else { //lock-free const u64 new_value = ((u64)value << 32) | 1; m_indval = new_value; } } __forceinline void PushUncond_OR(u32 value) { if (max_count > 1 || x86) { std::lock_guard lock(m_lock); if(m_index >= max_count) m_value[max_count-1] |= value; //last message is logically ORed else m_value[m_index++] = value; } else { #ifdef _M_X64 InterlockedOr64((volatile __int64*)m_indval, ((u64)value << 32) | 1); #else ConLog.Error("PushUncond_OR(): no code compiled"); #endif } } __forceinline void PopUncond(u32& res) { if (max_count > 1 || x86) { std::lock_guard lock(m_lock); if(!m_index) res = 0; //result is undefined else { res = m_value[--m_index]; m_value[m_index] = 0; } } else { //lock-free if(!m_index) res = 0; else { res = (m_indval >> 32); m_indval = 0; } } } __forceinline u32 GetCount() { if (max_count > 1 || x86) { std::lock_guard lock(m_lock); return m_index; } else { return m_index; } } __forceinline u32 GetFreeCount() { if (max_count > 1 || x86) { std::lock_guard lock(m_lock); return max_count - m_index; } else { return max_count - m_index; } } void SetValue(u32 value) { m_value[0] = value; } u32 GetValue() const { return m_value[0]; } }; struct MFCReg { Channel<1> LSA; Channel<1> EAH; Channel<1> EAL; Channel<1> Size_Tag; Channel<1> CMDStatus; Channel<1> QStatus; } MFC1, MFC2; struct { Channel<1> QueryType; Channel<1> QueryMask; Channel<1> TagStatus; Channel<1> AtomicStat; } Prxy; struct StalledList { u32 lsa; u64 ea; u16 tag; u16 size; u32 cmd; MFCReg* MFCArgs; StalledList() : MFCArgs(nullptr) { } } StallList[32]; Channel<1> StallStat; struct { Channel<1> Out_MBox; Channel<4> In_MBox; Channel<1> MBox_Status; Channel<1> RunCntl; Channel<1> Status; Channel<1> NPC; Channel<1> SNR[2]; } SPU; void WriteSNR(bool number, u32 value) { if (cfg.value & ((u64)1 << (u64)number)) { SPU.SNR[number].PushUncond_OR(value); // logical OR } else { SPU.SNR[number].PushUncond(value); // overwrite } } u32 LSA; union { u64 EA; struct { u32 EAH, EAL; }; }; DMAC dmac; bool ProcessCmd(u32 cmd, u32 tag, u32 lsa, u64 ea, u32 size) { if (cmd & (MFC_BARRIER_MASK | MFC_FENCE_MASK)) _mm_mfence(); if ((ea & 0xf0000000) == SYS_SPU_THREAD_BASE_LOW) { if (group) { // SPU Thread Group MMIO (LS and SNR) u32 num = (ea & SYS_SPU_THREAD_BASE_MASK) / SYS_SPU_THREAD_OFFSET; // thread number in group if (num >= group->list.GetCount() || !group->list[num]) { ConLog.Error("DMAC::ProcessCmd(): SPU Thread Group MMIO Access (ea=0x%llx): invalid thread", ea); return false; } SPUThread* spu = (SPUThread*)Emu.GetCPU().GetThread(group->list[num]); u32 addr = (ea & SYS_SPU_THREAD_BASE_MASK) % SYS_SPU_THREAD_OFFSET; if ((addr <= 0x3ffff) && (addr + size <= 0x40000)) { // LS access ea = spu->dmac.ls_offset + addr; } else if ((cmd & MFC_PUT_CMD) && size == 4 && (addr == SYS_SPU_THREAD_SNR1 || addr == SYS_SPU_THREAD_SNR2)) { spu->WriteSNR(SYS_SPU_THREAD_SNR2 == addr, Memory.Read32(dmac.ls_offset + lsa)); return true; } else { ConLog.Error("DMAC::ProcessCmd(): SPU Thread Group MMIO Access (ea=0x%llx, size=%d, cmd=0x%x): invalid command", ea, size, cmd); return false; } } else { ConLog.Error("DMAC::ProcessCmd(): SPU Thread Group MMIO Access (ea=0x%llx): group not set", ea); return false; } } switch(cmd & ~(MFC_BARRIER_MASK | MFC_FENCE_MASK | MFC_LIST_MASK | MFC_RESULT_MASK)) { case MFC_PUT_CMD: { return Memory.Copy(ea, dmac.ls_offset + lsa, size); } case MFC_GET_CMD: { return Memory.Copy(dmac.ls_offset + lsa, ea, size); } default: { ConLog.Error("DMAC::ProcessCmd(): Unknown DMA cmd."); return false; } } } u32 dmacCmd(u32 cmd, u32 tag, u32 lsa, u64 ea, u32 size) { /*if(proxy_pos >= MFC_PPU_MAX_QUEUE_SPACE) { return MFC_PPU_DMA_QUEUE_FULL; }*/ if (ProcessCmd(cmd, tag, lsa, ea, size)) return MFC_PPU_DMA_CMD_ENQUEUE_SUCCESSFUL; else return MFC_PPU_DMA_CMD_SEQUENCE_ERROR; } void ListCmd(u32 lsa, u64 ea, u16 tag, u16 size, u32 cmd, MFCReg& MFCArgs) { u32 list_addr = ea & 0x3ffff; u32 list_size = size / 8; lsa &= 0x3fff0; struct list_element { be_t s; // Stall-and-Notify bit (0x8000) be_t ts; // List Transfer Size be_t ea; // External Address Low }; u32 result = MFC_PPU_DMA_CMD_SEQUENCE_ERROR; for (u32 i = 0; i < list_size; i++) { mem_ptr_t rec(dmac.ls_offset + list_addr + i * 8); u32 size = rec->ts; if (size < 16 && size != 1 && size != 2 && size != 4 && size != 8) { ConLog.Error("DMA List: invalid transfer size(%d)", size); return; } u32 addr = rec->ea; result = dmacCmd(cmd, tag, lsa | (addr & 0xf), addr, size); if (result == MFC_PPU_DMA_CMD_SEQUENCE_ERROR) { break; } if (Ini.HLELogging.GetValue() || rec->s) ConLog.Write("*** list element(%d/%d): s = 0x%x, ts = 0x%x, low ea = 0x%x (lsa = 0x%x)", i, list_size, (u16)rec->s, (u16)rec->ts, (u32)rec->ea, lsa | (addr & 0xf)); lsa += max(size, (u32)16); if (rec->s & se16(0x8000)) { StallStat.PushUncond_OR(1 << tag); if (StallList[tag].MFCArgs) { ConLog.Error("DMA List: existing stalled list found (tag=%d)", tag); } StallList[tag].MFCArgs = &MFCArgs; StallList[tag].cmd = cmd; StallList[tag].ea = (ea & ~0xffffffff) | (list_addr + (i + 1) * 8); StallList[tag].lsa = lsa; StallList[tag].size = (list_size - i - 1) * 8; return; } } MFCArgs.CMDStatus.SetValue(result); } void EnqMfcCmd(MFCReg& MFCArgs) { u32 cmd = MFCArgs.CMDStatus.GetValue(); u16 op = cmd & MFC_MASK_CMD; u32 lsa = MFCArgs.LSA.GetValue(); u64 ea = (u64)MFCArgs.EAL.GetValue() | ((u64)MFCArgs.EAH.GetValue() << 32); u32 size_tag = MFCArgs.Size_Tag.GetValue(); u16 tag = (u16)size_tag; u16 size = size_tag >> 16; switch(op & ~(MFC_BARRIER_MASK | MFC_FENCE_MASK)) { case MFC_PUT_CMD: case MFC_PUTR_CMD: // ??? case MFC_GET_CMD: { if (Ini.HLELogging.GetValue()) ConLog.Write("DMA %s%s%s%s: lsa = 0x%x, ea = 0x%llx, tag = 0x%x, size = 0x%x, cmd = 0x%x", wxString(op & MFC_PUT_CMD ? "PUT" : "GET").wx_str(), wxString(op & MFC_RESULT_MASK ? "R" : "").wx_str(), wxString(op & MFC_BARRIER_MASK ? "B" : "").wx_str(), wxString(op & MFC_FENCE_MASK ? "F" : "").wx_str(), lsa, ea, tag, size, cmd); if (op & MFC_PUT_CMD) { SMutexLocker lock(reservation.mutex); // should be removed MFCArgs.CMDStatus.SetValue(dmacCmd(cmd, tag, lsa, ea, size)); if ((reservation.addr + reservation.size > ea && reservation.addr <= ea + size) || (ea + size > reservation.addr && ea <= reservation.addr + reservation.size)) { reservation.clear(); } } else { MFCArgs.CMDStatus.SetValue(dmacCmd(cmd, tag, lsa, ea, size)); } } break; case MFC_PUTL_CMD: case MFC_PUTRL_CMD: // ??? case MFC_GETL_CMD: { if (Ini.HLELogging.GetValue()) ConLog.Write("DMA %s%s%s%s: lsa = 0x%x, list = 0x%llx, tag = 0x%x, size = 0x%x, cmd = 0x%x", wxString(op & MFC_PUT_CMD ? "PUT" : "GET").wx_str(), wxString(op & MFC_RESULT_MASK ? "RL" : "L").wx_str(), wxString(op & MFC_BARRIER_MASK ? "B" : "").wx_str(), wxString(op & MFC_FENCE_MASK ? "F" : "").wx_str(), lsa, ea, tag, size, cmd); ListCmd(lsa, ea, tag, size, cmd, MFCArgs); } break; case MFC_GETLLAR_CMD: case MFC_PUTLLC_CMD: case MFC_PUTLLUC_CMD: case MFC_PUTQLLUC_CMD: { if (Ini.HLELogging.GetValue()) ConLog.Write("DMA %s: lsa=0x%x, ea = 0x%llx, (tag) = 0x%x, (size) = 0x%x, cmd = 0x%x", wxString(op == MFC_GETLLAR_CMD ? "GETLLAR" : op == MFC_PUTLLC_CMD ? "PUTLLC" : op == MFC_PUTLLUC_CMD ? "PUTLLUC" : "PUTQLLUC").wx_str(), lsa, ea, tag, size, cmd); if (op == MFC_GETLLAR_CMD) // get reservation { SMutexLocker lock(reservation.mutex); reservation.owner = lock.tid; reservation.addr = ea; reservation.size = 128; ProcessCmd(MFC_GET_CMD, tag, lsa, ea, 128); Prxy.AtomicStat.PushUncond(MFC_GETLLAR_SUCCESS); } else if (op == MFC_PUTLLC_CMD) // store conditional { SMutexLocker lock(reservation.mutex); if (reservation.owner == lock.tid) // succeeded { if (reservation.addr == ea && reservation.size == 128) { ProcessCmd(MFC_PUT_CMD, tag, lsa, ea, 128); Prxy.AtomicStat.PushUncond(MFC_PUTLLC_SUCCESS); } else { Prxy.AtomicStat.PushUncond(MFC_PUTLLC_FAILURE); } reservation.clear(); } else // failed { Prxy.AtomicStat.PushUncond(MFC_PUTLLC_FAILURE); } } else // store unconditional { SMutexLocker lock(reservation.mutex); ProcessCmd(MFC_PUT_CMD, tag, lsa, ea, 128); if (op == MFC_PUTLLUC_CMD) { Prxy.AtomicStat.PushUncond(MFC_PUTLLUC_SUCCESS); } if ((reservation.addr + reservation.size > ea && reservation.addr <= ea + size) || (ea + size > reservation.addr && ea <= reservation.addr + reservation.size)) { reservation.clear(); } } } break; default: ConLog.Error("Unknown MFC cmd. (opcode=0x%x, cmd=0x%x, lsa = 0x%x, ea = 0x%llx, tag = 0x%x, size = 0x%x)", op, cmd, lsa, ea, tag, size); break; } } u32 GetChannelCount(u32 ch) { u32 count; switch(ch) { case SPU_WrOutMbox: return SPU.Out_MBox.GetFreeCount(); case SPU_RdInMbox: count = SPU.In_MBox.GetCount(); //ConLog.Warning("GetChannelCount(%s) -> %d", wxString(spu_ch_name[ch]).wx_str(), count); return count; case SPU_WrOutIntrMbox: ConLog.Warning("GetChannelCount(%s) = 0", wxString(spu_ch_name[ch]).wx_str()); return 0; case MFC_RdTagStat: return Prxy.TagStatus.GetCount(); case MFC_RdListStallStat: return StallStat.GetCount(); case MFC_WrTagUpdate: return Prxy.TagStatus.GetCount(); // hack case SPU_RdSigNotify1: return SPU.SNR[0].GetCount(); case SPU_RdSigNotify2: return SPU.SNR[1].GetCount(); case MFC_RdAtomicStat: return Prxy.AtomicStat.GetCount(); default: ConLog.Error("%s error: unknown/illegal channel (%d [%s]).", wxString(__FUNCTION__).wx_str(), ch, wxString(spu_ch_name[ch]).wx_str()); break; } return 0; } void WriteChannel(u32 ch, const SPU_GPR_hdr& r) { const u32 v = r._u32[3]; switch(ch) { case SPU_WrOutIntrMbox: { u8 code = v >> 24; if (code < 64) { /* ===== sys_spu_thread_send_event ===== */ u8 spup = code & 63; u32 data; if (!SPU.Out_MBox.Pop(data)) { ConLog.Error("sys_spu_thread_send_event(v=0x%x, spup=%d): Out_MBox is empty", v, spup); return; } if (SPU.In_MBox.GetCount()) { ConLog.Error("sys_spu_thread_send_event(v=0x%x, spup=%d): In_MBox is not empty", v, spup); SPU.In_MBox.PushUncond(CELL_EBUSY); // ??? return; } if (Ini.HLELogging.GetValue()) { ConLog.Write("sys_spu_thread_send_event(spup=%d, data0=0x%x, data1=0x%x)", spup, v & 0x00ffffff, data); } EventPort& port = SPUPs[spup]; SMutexLocker lock(port.mutex); if (!port.eq) { SPU.In_MBox.PushUncond(CELL_ENOTCONN); // check error passing return; } if (!port.eq->events.push(SYS_SPU_THREAD_EVENT_USER_KEY, lock.tid, ((u64)code << 32) | (v & 0x00ffffff), data)) { SPU.In_MBox.PushUncond(CELL_EBUSY); return; } SPU.In_MBox.PushUncond(CELL_OK); return; } else if (code = 128) { /* ===== sys_event_flag_set_bit ===== */ u32 flag = v & 0xffffff; u32 data; if (!SPU.Out_MBox.Pop(data)) { ConLog.Error("sys_event_flag_set_bit(v=0x%x (flag=%d)): Out_MBox is empty", v, flag); return; } if (flag > 63) { ConLog.Error("sys_event_flag_set_bit(id=%d, v=0x%x): flag > 63", data, v, flag); return; } //if (Ini.HLELogging.GetValue()) { ConLog.Warning("sys_event_flag_set_bit(id=%d, v=0x%x (flag=%d))", data, v, flag); } EventFlag* ef; if (!Emu.GetIdManager().GetIDData(data, ef)) { ConLog.Error("sys_event_flag_set_bit(id=%d, v=0x%x (flag=%d)): EventFlag not found", data, v, flag); SPU.In_MBox.PushUncond(CELL_ESRCH); return; } u32 tid = GetCurrentCPUThread()->GetId(); ef->m_mutex.lock(tid); ef->flags |= (u64)1 << flag; if (u32 target = ef->check()) { // if signal, leave both mutexes locked... ef->signal.lock(target); ef->m_mutex.unlock(tid, target); } else { ef->m_mutex.unlock(tid); } SPU.In_MBox.PushUncond(CELL_OK); return; } else { u32 data; if (SPU.Out_MBox.Pop(data)) { ConLog.Error("SPU_WrOutIntrMbox: unknown data (v=0x%x); Out_MBox = 0x%x", v, data); } else { ConLog.Error("SPU_WrOutIntrMbox: unknown data (v=0x%x)", v); } SPU.In_MBox.PushUncond(CELL_EINVAL); // ??? return; } } break; case SPU_WrOutMbox: //ConLog.Warning("%s: %s = 0x%x", wxString(__FUNCTION__).wx_str(), wxString(spu_ch_name[ch]).wx_str(), v); while (!SPU.Out_MBox.Push(v) && !Emu.IsStopped()) Sleep(1); break; case MFC_WrTagMask: //ConLog.Warning("%s: %s = 0x%x", wxString(__FUNCTION__).wx_str(), wxString(spu_ch_name[ch]).wx_str(), v); Prxy.QueryMask.SetValue(v); break; case MFC_WrTagUpdate: //ConLog.Warning("%s: %s = 0x%x", wxString(__FUNCTION__).wx_str(), wxString(spu_ch_name[ch]).wx_str(), v); Prxy.TagStatus.PushUncond(Prxy.QueryMask.GetValue()); break; case MFC_LSA: MFC1.LSA.SetValue(v); break; case MFC_EAH: MFC1.EAH.SetValue(v); break; case MFC_EAL: MFC1.EAL.SetValue(v); break; case MFC_Size: MFC1.Size_Tag.SetValue((MFC1.Size_Tag.GetValue() & 0xffff) | (v << 16)); break; case MFC_TagID: MFC1.Size_Tag.SetValue((MFC1.Size_Tag.GetValue() & ~0xffff) | (v & 0xffff)); break; case MFC_Cmd: MFC1.CMDStatus.SetValue(v); EnqMfcCmd(MFC1); break; case MFC_WrListStallAck: { if (v >= 32) { ConLog.Error("MFC_WrListStallAck error: invalid tag(%d)", v); return; } StalledList temp = StallList[v]; if (!temp.MFCArgs) { ConLog.Error("MFC_WrListStallAck error: empty tag(%d)", v); return; } StallList[v].MFCArgs = nullptr; ListCmd(temp.lsa, temp.ea, temp.tag, temp.size, temp.cmd, *temp.MFCArgs); } break; default: ConLog.Error("%s error: unknown/illegal channel (%d [%s]).", wxString(__FUNCTION__).wx_str(), ch, wxString(spu_ch_name[ch]).wx_str()); break; } if (Emu.IsStopped()) ConLog.Warning("%s(%s) aborted", wxString(__FUNCTION__).wx_str(), wxString(spu_ch_name[ch]).wx_str()); } void ReadChannel(SPU_GPR_hdr& r, u32 ch) { r.Reset(); u32& v = r._u32[3]; switch(ch) { case SPU_RdInMbox: while (!SPU.In_MBox.Pop(v) && !Emu.IsStopped()) Sleep(1); //ConLog.Warning("%s: 0x%x = %s", wxString(__FUNCTION__).wx_str(), v, wxString(spu_ch_name[ch]).wx_str()); break; case MFC_RdTagStat: while (!Prxy.TagStatus.Pop(v) && !Emu.IsStopped()) Sleep(1); //ConLog.Warning("%s: 0x%x = %s", wxString(__FUNCTION__).wx_str(), v, wxString(spu_ch_name[ch]).wx_str()); break; case SPU_RdSigNotify1: while (!SPU.SNR[0].Pop(v) && !Emu.IsStopped()) Sleep(1); //ConLog.Warning("%s: 0x%x = %s", wxString(__FUNCTION__).wx_str(), v, wxString(spu_ch_name[ch]).wx_str()); break; case SPU_RdSigNotify2: while (!SPU.SNR[1].Pop(v) && !Emu.IsStopped()) Sleep(1); //ConLog.Warning("%s: 0x%x = %s", wxString(__FUNCTION__).wx_str(), v, wxString(spu_ch_name[ch]).wx_str()); break; case MFC_RdAtomicStat: while (!Prxy.AtomicStat.Pop(v) && !Emu.IsStopped()) Sleep(1); break; case MFC_RdListStallStat: while (!StallStat.Pop(v) && !Emu.IsStopped()) Sleep(1); break; default: ConLog.Error("%s error: unknown/illegal channel (%d [%s]).", wxString(__FUNCTION__).wx_str(), ch, wxString(spu_ch_name[ch]).wx_str()); break; } if (Emu.IsStopped()) ConLog.Warning("%s(%s) aborted", wxString(__FUNCTION__).wx_str(), wxString(spu_ch_name[ch]).wx_str()); } bool IsGoodLSA(const u32 lsa) const { return Memory.IsGoodAddr(lsa + m_offset) && lsa < 0x40000; } virtual u8 ReadLS8 (const u32 lsa) const { return Memory.Read8 (lsa + m_offset); } // m_offset & 0x3fffc ????? virtual u16 ReadLS16 (const u32 lsa) const { return Memory.Read16 (lsa + m_offset); } virtual u32 ReadLS32 (const u32 lsa) const { return Memory.Read32 (lsa + m_offset); } virtual u64 ReadLS64 (const u32 lsa) const { return Memory.Read64 (lsa + m_offset); } virtual u128 ReadLS128(const u32 lsa) const { return Memory.Read128(lsa + m_offset); } virtual void WriteLS8 (const u32 lsa, const u8& data) const { Memory.Write8 (lsa + m_offset, data); } virtual void WriteLS16 (const u32 lsa, const u16& data) const { Memory.Write16 (lsa + m_offset, data); } virtual void WriteLS32 (const u32 lsa, const u32& data) const { Memory.Write32 (lsa + m_offset, data); } virtual void WriteLS64 (const u32 lsa, const u64& data) const { Memory.Write64 (lsa + m_offset, data); } virtual void WriteLS128(const u32 lsa, const u128& data) const { Memory.Write128(lsa + m_offset, data); } public: SPUThread(CPUThreadType type = CPU_THREAD_SPU); virtual ~SPUThread(); virtual wxString RegsToString() { wxString ret = "Registers:\n=========\n"; for(uint i=0; i<128; ++i) ret += wxString::Format("GPR[%d] = 0x%s\n", i, GPR[i].ToString().wx_str()); return ret; } virtual wxString ReadRegString(wxString reg) { if (reg.Contains("[")) { long reg_index; reg.AfterFirst('[').RemoveLast().ToLong(®_index); if (reg.StartsWith("GPR")) return wxString::Format("%016llx%016llx", GPR[reg_index]._u64[1], GPR[reg_index]._u64[0]); } return wxEmptyString; } bool WriteRegString(wxString reg, wxString value) { while (value.Len() < 32) value = "0"+value; if (reg.Contains("[")) { long reg_index; reg.AfterFirst('[').RemoveLast().ToLong(®_index); if (reg.StartsWith("GPR")) { unsigned long long reg_value0; unsigned long long reg_value1; if (!value.SubString(16,31).ToULongLong(®_value0, 16)) return false; if (!value.SubString(0,15).ToULongLong(®_value1, 16)) return false; GPR[reg_index]._u64[0] = (u64)reg_value0; GPR[reg_index]._u64[1] = (u64)reg_value1; return true; } } return false; } public: virtual void InitRegs(); virtual u64 GetFreeStackSize() const; protected: virtual void DoReset(); virtual void DoRun(); virtual void DoPause(); virtual void DoResume(); virtual void DoStop(); virtual void DoClose(); }; SPUThread& GetCurrentSPUThread();