#include "stdafx.h" #include "PadHandler.h" #include "Emu/system_utils.hpp" #include "Emu/system_config.h" #include "Input/pad_thread.h" #include "Input/product_info.h" cfg_input g_cfg_input; PadHandlerBase::PadHandlerBase(pad_handler type) : m_type(type) { } std::set PadHandlerBase::narrow_set(const std::set& src) { if (src.empty()) return {}; std::set dst; for (const u64& s : src) { dst.insert(::narrow(s)); } return dst; } // Get new multiplied value based on the multiplier s32 PadHandlerBase::MultipliedInput(s32 raw_value, s32 multiplier) { return (multiplier * raw_value) / 100; } // Get new scaled value between 0 and 255 based on its minimum and maximum f32 PadHandlerBase::ScaledInput(s32 raw_value, int minimum, int maximum, f32 range) { // value based on max range converted to [0, 1] const f32 val = static_cast(std::clamp(raw_value, minimum, maximum) - minimum) / (abs(maximum) + abs(minimum)); return range * val; } // Get new scaled value between -255 and 255 based on its minimum and maximum f32 PadHandlerBase::ScaledInput2(s32 raw_value, int minimum, int maximum, f32 range) { // value based on max range converted to [0, 1] const f32 val = static_cast(std::clamp(raw_value, minimum, maximum) - minimum) / (abs(maximum) + abs(minimum)); return (2.0f * range * val) - range; } // Get normalized trigger value based on the range defined by a threshold u16 PadHandlerBase::NormalizeTriggerInput(u16 value, int threshold) const { if (value <= threshold || threshold >= trigger_max) { return static_cast(0); } else if (threshold <= trigger_min) { return static_cast(ScaledInput(value, trigger_min, trigger_max)); } else { const s32 val = static_cast(static_cast(trigger_max) * (value - threshold) / (trigger_max - threshold)); return static_cast(ScaledInput(val, trigger_min, trigger_max)); } } // normalizes a directed input, meaning it will correspond to a single "button" and not an axis with two directions // the input values must lie in 0+ u16 PadHandlerBase::NormalizeDirectedInput(s32 raw_value, s32 threshold, s32 maximum) const { if (threshold >= maximum || maximum <= 0) { return static_cast(0); } const f32 val = static_cast(std::clamp(raw_value, 0, maximum)) / maximum; // value based on max range converted to [0, 1] if (threshold <= 0) { return static_cast(255.0f * val); } else { const f32 thresh = static_cast(threshold) / maximum; // threshold converted to [0, 1] return static_cast(255.0f * std::min(1.0f, (val - thresh) / (1.0f - thresh))); } } u16 PadHandlerBase::NormalizeStickInput(u16 raw_value, int threshold, int multiplier, bool ignore_threshold) const { const s32 scaled_value = MultipliedInput(raw_value, multiplier); if (ignore_threshold) { return static_cast(ScaledInput(scaled_value, 0, thumb_max)); } else { return NormalizeDirectedInput(scaled_value, threshold, thumb_max); } } // This function normalizes stick deadzone based on the DS3's deadzone, which is ~13% // X and Y is expected to be in (-255) to 255 range, deadzone should be in terms of thumb stick range // return is new x and y values in 0-255 range std::tuple PadHandlerBase::NormalizeStickDeadzone(s32 inX, s32 inY, u32 deadzone) const { const f32 dz_range = deadzone / static_cast(std::abs(thumb_max)); // NOTE: thumb_max should be positive anyway f32 X = inX / 255.0f; f32 Y = inY / 255.0f; if (dz_range > 0.f) { const f32 mag = std::min(sqrtf(X * X + Y * Y), 1.f); if (mag <= 0) { return std::tuple(ConvertAxis(X), ConvertAxis(Y)); } if (mag > dz_range) { const f32 pos = std::lerp(0.13f, 1.f, (mag - dz_range) / (1 - dz_range)); const f32 scale = pos / mag; X = X * scale; Y = Y * scale; } else { const f32 pos = std::lerp(0.f, 0.13f, mag / dz_range); const f32 scale = pos / mag; X = X * scale; Y = Y * scale; } } return std::tuple(ConvertAxis(X), ConvertAxis(Y)); } // get clamped value between 0 and 255 u16 PadHandlerBase::Clamp0To255(f32 input) { return static_cast(std::clamp(input, 0.0f, 255.0f)); } // get clamped value between 0 and 1023 u16 PadHandlerBase::Clamp0To1023(f32 input) { return static_cast(std::clamp(input, 0.0f, 1023.0f)); } // input has to be [-1,1]. result will be [0,255] u16 PadHandlerBase::ConvertAxis(f32 value) { return static_cast((value + 1.0) * (255.0 / 2.0)); } // The DS3, (and i think xbox controllers) give a 'square-ish' type response, so that the corners will give (almost)max x/y instead of the ~30x30 from a perfect circle // using a simple scale/sensitivity increase would *work* although it eats a chunk of our usable range in exchange // this might be the best for now, in practice it seems to push the corners to max of 20x20, with a squircle_factor of 8000 // This function assumes inX and inY is already in 0-255 std::tuple PadHandlerBase::ConvertToSquirclePoint(u16 inX, u16 inY, int squircle_factor) { // convert inX and Y to a (-1, 1) vector; const f32 x = (inX - 127.5f) / 127.5f; const f32 y = (inY - 127.5f) / 127.5f; // compute angle and len of given point to be used for squircle radius const f32 angle = std::atan2(y, x); const f32 r = std::sqrt(std::pow(x, 2.f) + std::pow(y, 2.f)); // now find len/point on the given squircle from our current angle and radius in polar coords // https://thatsmaths.com/2016/07/14/squircles/ const f32 newLen = (1 + std::pow(std::sin(2 * angle), 2.f) / (squircle_factor / 1000.f)) * r; // we now have len and angle, convert to cartesian const int newX = Clamp0To255(std::round(((newLen * std::cos(angle)) + 1) * 127.5f)); const int newY = Clamp0To255(std::round(((newLen * std::sin(angle)) + 1) * 127.5f)); return std::tuple(newX, newY); } std::string PadHandlerBase::name_string() const { return m_name_string; } usz PadHandlerBase::max_devices() const { return m_max_devices; } bool PadHandlerBase::has_config() const { return b_has_config; } bool PadHandlerBase::has_rumble() const { return b_has_rumble; } bool PadHandlerBase::has_motion() const { return b_has_motion; } bool PadHandlerBase::has_deadzones() const { return b_has_deadzones; } bool PadHandlerBase::has_led() const { return b_has_led; } bool PadHandlerBase::has_rgb() const { return b_has_rgb; } bool PadHandlerBase::has_player_led() const { return b_has_player_led; } bool PadHandlerBase::has_battery() const { return b_has_battery; } bool PadHandlerBase::has_pressure_intensity_button() const { return b_has_pressure_intensity_button; } void PadHandlerBase::init_configs() { for (u32 i = 0; i < MAX_GAMEPADS; i++) { init_config(&m_pad_configs[i]); } } cfg_pad* PadHandlerBase::get_config(const std::string& pad_id) { int index = 0; for (uint i = 0; i < MAX_GAMEPADS; i++) { if (g_cfg_input.player[i]->handler == m_type) { if (g_cfg_input.player[i]->device.to_string() == pad_id) { m_pad_configs[index].from_string(g_cfg_input.player[i]->config.to_string()); return &m_pad_configs[index]; } index++; } } return nullptr; } PadHandlerBase::connection PadHandlerBase::get_next_button_press(const std::string& pad_id, const pad_callback& callback, const pad_fail_callback& fail_callback, bool get_blacklist, const std::vector& /*buttons*/) { if (get_blacklist) blacklist.clear(); auto device = get_device(pad_id); const connection status = update_connection(device); if (status == connection::disconnected) { if (fail_callback) fail_callback(pad_id); return status; } if (status == connection::no_data) { return status; } // Get the current button values auto data = get_button_values(device); // Check for each button in our list if its corresponding (maybe remapped) button or axis was pressed. // Return the new value if the button was pressed (aka. its value was bigger than 0 or the defined threshold) // Get all the legally pressed buttons and use the one with highest value (prioritize first) struct { u16 value = 0; std::string name; } pressed_button{}; for (const auto& [keycode, name] : button_list) { const u16& value = data[keycode]; if (!get_blacklist && blacklist.contains(keycode)) continue; const bool is_trigger = get_is_left_trigger(device, keycode) || get_is_right_trigger(device, keycode); const bool is_stick = !is_trigger && (get_is_left_stick(device, keycode) || get_is_right_stick(device, keycode)); const bool is_button = !is_trigger && !is_stick; if ((is_trigger && (value > m_trigger_threshold)) || (is_stick && (value > m_thumb_threshold)) || (is_button && (value > 0))) { if (get_blacklist) { blacklist.insert(keycode); input_log.error("%s Calibration: Added key [ %d = %s ] to blacklist. Value = %d", m_type, keycode, name, value); } else if (value > pressed_button.value) { pressed_button = { .value = value, .name = name }; } } } if (get_blacklist) { if (blacklist.empty()) input_log.success("%s Calibration: Blacklist is clear. No input spam detected", m_type); return status; } if (callback) { const pad_preview_values preview_values = get_preview_values(data); const u32 battery_level = get_battery_level(pad_id); if (pressed_button.value > 0) callback(pressed_button.value, pressed_button.name, pad_id, battery_level, preview_values); else callback(0, "", pad_id, battery_level, preview_values); } return status; } void PadHandlerBase::get_motion_sensors(const std::string& pad_id, const motion_callback& callback, const motion_fail_callback& fail_callback, motion_preview_values preview_values, const std::array& /*sensors*/) { if (!b_has_motion) { return; } // Reset sensors auto device = get_device(pad_id); const connection status = update_connection(device); if (status == connection::disconnected) { if (fail_callback) fail_callback(pad_id, std::move(preview_values)); return; } if (status == connection::no_data || !callback) { return; } // Get the current motion values std::shared_ptr pad = std::make_shared(m_type, 0, 0, 0); pad->m_sensors.resize(preview_values.size(), AnalogSensor(0, 0, 0, 0, 0)); pad_ensemble binding{pad, device, nullptr}; get_extended_info(binding); for (usz i = 0; i < preview_values.size(); i++) { preview_values[i] = pad->m_sensors[i].m_value; } callback(pad_id, std::move(preview_values)); } void PadHandlerBase::convert_stick_values(u16& x_out, u16& y_out, const s32& x_in, const s32& y_in, const s32& deadzone, const s32& padsquircling) const { // Normalize our stick axis based on the deadzone std::tie(x_out, y_out) = NormalizeStickDeadzone(x_in, y_in, deadzone); // Apply pad squircling if necessary if (padsquircling != 0) { std::tie(x_out, y_out) = ConvertToSquirclePoint(x_out, y_out, padsquircling); } } // Update the pad button values based on their type and thresholds. With this you can use axis or triggers as buttons or vice versa void PadHandlerBase::TranslateButtonPress(const std::shared_ptr& device, u64 keyCode, bool& pressed, u16& val, bool ignore_stick_threshold, bool ignore_trigger_threshold) { if (!device || !device->config) { return; } if (get_is_left_trigger(device, keyCode)) { pressed = val > (ignore_trigger_threshold ? 0 : device->config->ltriggerthreshold); val = pressed ? NormalizeTriggerInput(val, device->config->ltriggerthreshold) : 0; } else if (get_is_right_trigger(device, keyCode)) { pressed = val > (ignore_trigger_threshold ? 0 : device->config->rtriggerthreshold); val = pressed ? NormalizeTriggerInput(val, device->config->rtriggerthreshold) : 0; } else if (get_is_left_stick(device, keyCode)) { pressed = val > (ignore_stick_threshold ? 0 : device->config->lstickdeadzone); val = pressed ? NormalizeStickInput(val, device->config->lstickdeadzone, device->config->lstickmultiplier, ignore_stick_threshold) : 0; } else if (get_is_right_stick(device, keyCode)) { pressed = val > (ignore_stick_threshold ? 0 : device->config->rstickdeadzone); val = pressed ? NormalizeStickInput(val, device->config->rstickdeadzone, device->config->rstickmultiplier, ignore_stick_threshold) : 0; } else // normal button (should in theory also support sensitive buttons) { pressed = val > 0; val = pressed ? val : 0; } } bool PadHandlerBase::bindPadToDevice(std::shared_ptr pad, u8 player_id) { if (!pad || player_id >= g_cfg_input.player.size()) { return false; } const cfg_player* player_config = g_cfg_input.player[player_id]; if (!player_config) { return false; } std::shared_ptr pad_device = get_device(player_config->device); if (!pad_device) { input_log.error("PadHandlerBase::bindPadToDevice: no PadDevice found for device '%s'", player_config->device.to_string()); return false; } m_pad_configs[player_id].from_string(player_config->config.to_string()); pad_device->config = &m_pad_configs[player_id]; pad_device->player_id = player_id; cfg_pad* config = pad_device->config; if (config == nullptr) { input_log.error("PadHandlerBase::bindPadToDevice: no profile found for device %d '%s'", m_bindings.size(), player_config->device.to_string()); return false; } std::array, button::button_count> mapping = get_mapped_key_codes(pad_device, config); u32 pclass_profile = 0x0; for (const input::product_info& product : input::get_products_by_class(config->device_class_type)) { if (product.vendor_id == config->vendor_id && product.product_id == config->product_id) { pclass_profile = product.pclass_profile; } } pad->Init ( CELL_PAD_STATUS_DISCONNECTED, CELL_PAD_CAPABILITY_PS3_CONFORMITY | CELL_PAD_CAPABILITY_PRESS_MODE | CELL_PAD_CAPABILITY_HP_ANALOG_STICK | CELL_PAD_CAPABILITY_ACTUATOR | CELL_PAD_CAPABILITY_SENSOR_MODE, CELL_PAD_DEV_TYPE_STANDARD, config->device_class_type, pclass_profile, config->vendor_id, config->product_id, config->pressure_intensity ); pad->m_buttons.emplace_back(special_button_offset, mapping[button::pressure_intensity_button], special_button_value::pressure_intensity); pad->m_pressure_intensity_button_index = static_cast(pad->m_buttons.size()) - 1; pad->m_buttons.emplace_back(CELL_PAD_BTN_OFFSET_DIGITAL1, mapping[button::up], CELL_PAD_CTRL_UP); pad->m_buttons.emplace_back(CELL_PAD_BTN_OFFSET_DIGITAL1, mapping[button::down], CELL_PAD_CTRL_DOWN); pad->m_buttons.emplace_back(CELL_PAD_BTN_OFFSET_DIGITAL1, mapping[button::left], CELL_PAD_CTRL_LEFT); pad->m_buttons.emplace_back(CELL_PAD_BTN_OFFSET_DIGITAL1, mapping[button::right], CELL_PAD_CTRL_RIGHT); pad->m_buttons.emplace_back(CELL_PAD_BTN_OFFSET_DIGITAL2, mapping[button::cross], CELL_PAD_CTRL_CROSS); pad->m_buttons.emplace_back(CELL_PAD_BTN_OFFSET_DIGITAL2, mapping[button::square], CELL_PAD_CTRL_SQUARE); pad->m_buttons.emplace_back(CELL_PAD_BTN_OFFSET_DIGITAL2, mapping[button::circle], CELL_PAD_CTRL_CIRCLE); pad->m_buttons.emplace_back(CELL_PAD_BTN_OFFSET_DIGITAL2, mapping[button::triangle], CELL_PAD_CTRL_TRIANGLE); pad->m_buttons.emplace_back(CELL_PAD_BTN_OFFSET_DIGITAL2, mapping[button::l1], CELL_PAD_CTRL_L1); pad->m_buttons.emplace_back(CELL_PAD_BTN_OFFSET_DIGITAL2, mapping[button::l2], CELL_PAD_CTRL_L2); pad->m_buttons.emplace_back(CELL_PAD_BTN_OFFSET_DIGITAL1, mapping[button::l3], CELL_PAD_CTRL_L3); pad->m_buttons.emplace_back(CELL_PAD_BTN_OFFSET_DIGITAL2, mapping[button::r1], CELL_PAD_CTRL_R1); pad->m_buttons.emplace_back(CELL_PAD_BTN_OFFSET_DIGITAL2, mapping[button::r2], CELL_PAD_CTRL_R2); pad->m_buttons.emplace_back(CELL_PAD_BTN_OFFSET_DIGITAL1, mapping[button::r3], CELL_PAD_CTRL_R3); pad->m_buttons.emplace_back(CELL_PAD_BTN_OFFSET_DIGITAL1, mapping[button::start], CELL_PAD_CTRL_START); pad->m_buttons.emplace_back(CELL_PAD_BTN_OFFSET_DIGITAL1, mapping[button::select], CELL_PAD_CTRL_SELECT); pad->m_buttons.emplace_back(CELL_PAD_BTN_OFFSET_DIGITAL1, mapping[button::ps], CELL_PAD_CTRL_PS); pad->m_sticks.emplace_back(CELL_PAD_BTN_OFFSET_ANALOG_LEFT_X, mapping[button::ls_left], mapping[button::ls_right]); pad->m_sticks.emplace_back(CELL_PAD_BTN_OFFSET_ANALOG_LEFT_Y, mapping[button::ls_down], mapping[button::ls_up]); pad->m_sticks.emplace_back(CELL_PAD_BTN_OFFSET_ANALOG_RIGHT_X, mapping[button::rs_left], mapping[button::rs_right]); pad->m_sticks.emplace_back(CELL_PAD_BTN_OFFSET_ANALOG_RIGHT_Y, mapping[button::rs_down], mapping[button::rs_up]); pad->m_sensors.emplace_back(CELL_PAD_BTN_OFFSET_SENSOR_X, 0, 0, 0, DEFAULT_MOTION_X); pad->m_sensors.emplace_back(CELL_PAD_BTN_OFFSET_SENSOR_Y, 0, 0, 0, DEFAULT_MOTION_Y); pad->m_sensors.emplace_back(CELL_PAD_BTN_OFFSET_SENSOR_Z, 0, 0, 0, DEFAULT_MOTION_Z); pad->m_sensors.emplace_back(CELL_PAD_BTN_OFFSET_SENSOR_G, 0, 0, 0, DEFAULT_MOTION_G); pad->m_vibrateMotors.emplace_back(true, 0); pad->m_vibrateMotors.emplace_back(false, 0); m_bindings.emplace_back(pad, pad_device, nullptr); return true; } std::array, PadHandlerBase::button::button_count> PadHandlerBase::get_mapped_key_codes(const std::shared_ptr& device, const cfg_pad* cfg) { std::array, button::button_count> mapping{}; if (!device || !cfg) return mapping; device->trigger_code_left = FindKeyCodes(button_list, cfg->l2); device->trigger_code_right = FindKeyCodes(button_list, cfg->r2); device->axis_code_left[0] = FindKeyCodes(button_list, cfg->ls_left); device->axis_code_left[1] = FindKeyCodes(button_list, cfg->ls_right); device->axis_code_left[2] = FindKeyCodes(button_list, cfg->ls_down); device->axis_code_left[3] = FindKeyCodes(button_list, cfg->ls_up); device->axis_code_right[0] = FindKeyCodes(button_list, cfg->rs_left); device->axis_code_right[1] = FindKeyCodes(button_list, cfg->rs_right); device->axis_code_right[2] = FindKeyCodes(button_list, cfg->rs_down); device->axis_code_right[3] = FindKeyCodes(button_list, cfg->rs_up); mapping[button::up] = FindKeyCodes(button_list, cfg->up); mapping[button::down] = FindKeyCodes(button_list, cfg->down); mapping[button::left] = FindKeyCodes(button_list, cfg->left); mapping[button::right] = FindKeyCodes(button_list, cfg->right); mapping[button::cross] = FindKeyCodes(button_list, cfg->cross); mapping[button::square] = FindKeyCodes(button_list, cfg->square); mapping[button::circle] = FindKeyCodes(button_list, cfg->circle); mapping[button::triangle] = FindKeyCodes(button_list, cfg->triangle); mapping[button::start] = FindKeyCodes(button_list, cfg->start); mapping[button::select] = FindKeyCodes(button_list, cfg->select); mapping[button::l1] = FindKeyCodes(button_list, cfg->l1); mapping[button::l2] = narrow_set(device->trigger_code_left); mapping[button::l3] = FindKeyCodes(button_list, cfg->l3); mapping[button::r1] = FindKeyCodes(button_list, cfg->r1); mapping[button::r2] = narrow_set(device->trigger_code_right); mapping[button::r3] = FindKeyCodes(button_list, cfg->r3); mapping[button::ls_left] = narrow_set(device->axis_code_left[0]); mapping[button::ls_right] = narrow_set(device->axis_code_left[1]); mapping[button::ls_down] = narrow_set(device->axis_code_left[2]); mapping[button::ls_up] = narrow_set(device->axis_code_left[3]); mapping[button::rs_left] = narrow_set(device->axis_code_right[0]); mapping[button::rs_right] = narrow_set(device->axis_code_right[1]); mapping[button::rs_down] = narrow_set(device->axis_code_right[2]); mapping[button::rs_up] = narrow_set(device->axis_code_right[3]); mapping[button::ps] = FindKeyCodes(button_list, cfg->ps); mapping[button::pressure_intensity_button] = FindKeyCodes(button_list, cfg->pressure_intensity_button); return mapping; } void PadHandlerBase::get_mapping(const pad_ensemble& binding) { const auto& device = binding.device; const auto& pad = binding.pad; if (!device || !pad) return; const cfg_pad* cfg = device->config; if (!cfg) return; auto button_values = get_button_values(device); // Find out if special buttons are pressed (introduced by RPCS3). // These buttons will have a delay of one cycle, but whatever. const bool adjust_pressure = pad->get_pressure_intensity_enabled(cfg->pressure_intensity_toggle_mode.get()); // Translate any corresponding keycodes to our normal DS3 buttons and triggers for (Button& button : pad->m_buttons) { bool pressed{}; u16 value{}; for (u32 code : button.m_key_codes) { bool press{}; u16 val = button_values[code]; TranslateButtonPress(device, code, press, val); if (press) { // Modify pressure if necessary if the button was pressed if (adjust_pressure) { val = pad->m_pressure_intensity; } value = std::max(value, val); pressed = true; } } button.m_value = value; button.m_pressed = pressed; } // used to get the absolute value of an axis s32 stick_val[4]{}; // Translate any corresponding keycodes to our two sticks. (ignoring thresholds for now) for (int i = 0; i < static_cast(pad->m_sticks.size()); i++) { bool pressed{}; u16 val_min{}; u16 val_max{}; // m_key_codes_min are the mapped keys for left or down for (u32 key_min : pad->m_sticks[i].m_key_codes_min) { u16 val = button_values[key_min]; TranslateButtonPress(device, key_min, pressed, val, true); if (pressed) { val_min = std::max(val_min, val); } } // m_key_codes_max are the mapped keys for right or up for (u32 key_max : pad->m_sticks[i].m_key_codes_max) { u16 val = button_values[key_max]; TranslateButtonPress(device, key_max, pressed, val, true); if (pressed) { val_max = std::max(val_max, val); } } // cancel out opposing values and get the resulting difference stick_val[i] = val_max - val_min; } u16 lx, ly, rx, ry; // Normalize and apply pad squircling convert_stick_values(lx, ly, stick_val[0], stick_val[1], cfg->lstickdeadzone, cfg->lpadsquircling); convert_stick_values(rx, ry, stick_val[2], stick_val[3], cfg->rstickdeadzone, cfg->rpadsquircling); if (m_type == pad_handler::ds4) { ly = 255 - ly; ry = 255 - ry; // these are added with previous value and divided to 'smooth' out the readings // the ds4 seems to rapidly flicker sometimes between two values and this seems to stop that pad->m_sticks[0].m_value = (lx + pad->m_sticks[0].m_value) / 2; // LX pad->m_sticks[1].m_value = (ly + pad->m_sticks[1].m_value) / 2; // LY pad->m_sticks[2].m_value = (rx + pad->m_sticks[2].m_value) / 2; // RX pad->m_sticks[3].m_value = (ry + pad->m_sticks[3].m_value) / 2; // RY } else { pad->m_sticks[0].m_value = lx; pad->m_sticks[1].m_value = 255 - ly; pad->m_sticks[2].m_value = rx; pad->m_sticks[3].m_value = 255 - ry; } } void PadHandlerBase::process() { for (usz i = 0; i < m_bindings.size(); ++i) { auto& device = m_bindings[i].device; auto& pad = m_bindings[i].pad; if (!device || !pad) continue; const connection status = update_connection(device); switch (status) { case connection::no_data: case connection::connected: { if (!last_connection_status[i]) { input_log.success("%s device %d connected", m_type, i); pad->m_port_status |= CELL_PAD_STATUS_CONNECTED; pad->m_port_status |= CELL_PAD_STATUS_ASSIGN_CHANGES; last_connection_status[i] = true; connected_devices++; } if (status == connection::no_data) { // TODO: don't skip entirely if buddy device has data apply_pad_data(m_bindings[i]); continue; } break; } case connection::disconnected: { if (g_cfg.io.keep_pads_connected) { if (!last_connection_status[i]) { input_log.success("%s device %d connected by force", m_type, i); pad->m_port_status |= CELL_PAD_STATUS_CONNECTED; pad->m_port_status |= CELL_PAD_STATUS_ASSIGN_CHANGES; last_connection_status[i] = true; connected_devices++; } continue; } if (last_connection_status[i]) { input_log.error("%s device %d disconnected", m_type, i); pad->m_port_status &= ~CELL_PAD_STATUS_CONNECTED; pad->m_port_status |= CELL_PAD_STATUS_ASSIGN_CHANGES; last_connection_status[i] = false; connected_devices--; } continue; } } get_mapping(m_bindings[i]); get_extended_info(m_bindings[i]); apply_pad_data(m_bindings[i]); } }