#include "stdafx.h" #include "Emu/Memory/Memory.h" #include "Emu/System.h" #include "GLGSRender.h" #include "GLVertexProgram.h" #include "../rsx_methods.h" #include "../Common/BufferUtils.h" #include "../rsx_utils.h" #define DUMP_VERTEX_DATA 0 namespace { u32 get_max_depth_value(rsx::surface_depth_format format) { switch (format) { case rsx::surface_depth_format::z16: return 0xFFFF; case rsx::surface_depth_format::z24s8: return 0xFFFFFF; } fmt::throw_exception("Unknown depth format" HERE); } } GLGSRender::GLGSRender() : GSRender() { m_shaders_cache.reset(new gl::shader_cache(m_prog_buffer, "opengl", "v1.1")); if (g_cfg.video.disable_vertex_cache) m_vertex_cache.reset(new gl::null_vertex_cache()); else m_vertex_cache.reset(new gl::weak_vertex_cache()); supports_multidraw = !g_cfg.video.strict_rendering_mode; supports_native_ui = (bool)g_cfg.misc.use_native_interface; } extern CellGcmContextData current_context; namespace { GLenum comparison_op(rsx::comparison_function op) { switch (op) { case rsx::comparison_function::never: return GL_NEVER; case rsx::comparison_function::less: return GL_LESS; case rsx::comparison_function::equal: return GL_EQUAL; case rsx::comparison_function::less_or_equal: return GL_LEQUAL; case rsx::comparison_function::greater: return GL_GREATER; case rsx::comparison_function::not_equal: return GL_NOTEQUAL; case rsx::comparison_function::greater_or_equal: return GL_GEQUAL; case rsx::comparison_function::always: return GL_ALWAYS; } fmt::throw_exception("Unsupported comparison op 0x%X" HERE, (u32)op);; } GLenum stencil_op(rsx::stencil_op op) { switch (op) { case rsx::stencil_op::invert: return GL_INVERT; case rsx::stencil_op::keep: return GL_KEEP; case rsx::stencil_op::zero: return GL_ZERO; case rsx::stencil_op::replace: return GL_REPLACE; case rsx::stencil_op::incr: return GL_INCR; case rsx::stencil_op::decr: return GL_DECR; case rsx::stencil_op::incr_wrap: return GL_INCR_WRAP; case rsx::stencil_op::decr_wrap: return GL_DECR_WRAP; } fmt::throw_exception("Unsupported stencil op 0x%X" HERE, (u32)op); } GLenum blend_equation(rsx::blend_equation op) { switch (op) { // Note : maybe add is signed on gl case rsx::blend_equation::add_signed: LOG_TRACE(RSX, "blend equation add_signed used. Emulating using FUNC_ADD"); case rsx::blend_equation::add: return GL_FUNC_ADD; case rsx::blend_equation::min: return GL_MIN; case rsx::blend_equation::max: return GL_MAX; case rsx::blend_equation::substract: return GL_FUNC_SUBTRACT; case rsx::blend_equation::reverse_substract_signed: LOG_TRACE(RSX, "blend equation reverse_subtract_signed used. Emulating using FUNC_REVERSE_SUBTRACT"); case rsx::blend_equation::reverse_substract: return GL_FUNC_REVERSE_SUBTRACT; case rsx::blend_equation::reverse_add_signed: default: LOG_ERROR(RSX, "Blend equation 0x%X is unimplemented!", (u32)op); return GL_FUNC_ADD; } } GLenum blend_factor(rsx::blend_factor op) { switch (op) { case rsx::blend_factor::zero: return GL_ZERO; case rsx::blend_factor::one: return GL_ONE; case rsx::blend_factor::src_color: return GL_SRC_COLOR; case rsx::blend_factor::one_minus_src_color: return GL_ONE_MINUS_SRC_COLOR; case rsx::blend_factor::dst_color: return GL_DST_COLOR; case rsx::blend_factor::one_minus_dst_color: return GL_ONE_MINUS_DST_COLOR; case rsx::blend_factor::src_alpha: return GL_SRC_ALPHA; case rsx::blend_factor::one_minus_src_alpha: return GL_ONE_MINUS_SRC_ALPHA; case rsx::blend_factor::dst_alpha: return GL_DST_ALPHA; case rsx::blend_factor::one_minus_dst_alpha: return GL_ONE_MINUS_DST_ALPHA; case rsx::blend_factor::src_alpha_saturate: return GL_SRC_ALPHA_SATURATE; case rsx::blend_factor::constant_color: return GL_CONSTANT_COLOR; case rsx::blend_factor::one_minus_constant_color: return GL_ONE_MINUS_CONSTANT_COLOR; case rsx::blend_factor::constant_alpha: return GL_CONSTANT_ALPHA; case rsx::blend_factor::one_minus_constant_alpha: return GL_ONE_MINUS_CONSTANT_ALPHA; } fmt::throw_exception("Unsupported blend factor 0x%X" HERE, (u32)op); } GLenum logic_op(rsx::logic_op op) { switch (op) { case rsx::logic_op::logic_clear: return GL_CLEAR; case rsx::logic_op::logic_and: return GL_AND; case rsx::logic_op::logic_and_reverse: return GL_AND_REVERSE; case rsx::logic_op::logic_copy: return GL_COPY; case rsx::logic_op::logic_and_inverted: return GL_AND_INVERTED; case rsx::logic_op::logic_noop: return GL_NOOP; case rsx::logic_op::logic_xor: return GL_XOR; case rsx::logic_op::logic_or: return GL_OR; case rsx::logic_op::logic_nor: return GL_NOR; case rsx::logic_op::logic_equiv: return GL_EQUIV; case rsx::logic_op::logic_invert: return GL_INVERT; case rsx::logic_op::logic_or_reverse: return GL_OR_REVERSE; case rsx::logic_op::logic_copy_inverted: return GL_COPY_INVERTED; case rsx::logic_op::logic_or_inverted: return GL_OR_INVERTED; case rsx::logic_op::logic_nand: return GL_NAND; case rsx::logic_op::logic_set: return GL_SET; } fmt::throw_exception("Unsupported logic op 0x%X" HERE, (u32)op); } GLenum front_face(rsx::front_face op) { //NOTE: RSX face winding is always based off of upper-left corner like vulkan, but GL is bottom left //shader_window_origin register does not affect this //verified with Outrun Online Arcade (window_origin::top) and DS2 (window_origin::bottom) //correctness of face winding checked using stencil test (GOW collection shadows) switch (op) { case rsx::front_face::cw: return GL_CCW; case rsx::front_face::ccw: return GL_CW; } fmt::throw_exception("Unsupported front face 0x%X" HERE, (u32)op); } GLenum cull_face(rsx::cull_face op) { switch (op) { case rsx::cull_face::front: return GL_FRONT; case rsx::cull_face::back: return GL_BACK; case rsx::cull_face::front_and_back: return GL_FRONT_AND_BACK; } fmt::throw_exception("Unsupported cull face 0x%X" HERE, (u32)op); } } void GLGSRender::begin() { rsx::thread::begin(); if (skip_frame || (conditional_render_enabled && conditional_render_test_failed)) return; init_buffers(rsx::framebuffer_creation_context::context_draw); } void GLGSRender::end() { std::chrono::time_point state_check_start = steady_clock::now(); if (skip_frame || !framebuffer_status_valid || (conditional_render_enabled && conditional_render_test_failed) || !check_program_state()) { rsx::thread::end(); return; } std::chrono::time_point state_check_end = steady_clock::now(); m_begin_time += (u32)std::chrono::duration_cast(state_check_end - state_check_start).count(); if (manually_flush_ring_buffers) { //Use approximations to reseve space. This path is mostly for debug purposes anyway u32 approx_vertex_count = rsx::method_registers.current_draw_clause.get_elements_count(); u32 approx_working_buffer_size = approx_vertex_count * 256; //Allocate 256K heap if we have no approximation at this time (inlined array) m_attrib_ring_buffer->reserve_storage_on_heap(std::max(approx_working_buffer_size, 256 * 1024U)); m_index_ring_buffer->reserve_storage_on_heap(16 * 1024); } //Do vertex upload before RTT prep / texture lookups to give the driver time to push data auto upload_info = set_vertex_buffer(); //Load textures { std::chrono::time_point textures_start = steady_clock::now(); std::lock_guard lock(m_sampler_mutex); void* unused = nullptr; bool update_framebuffer_sourced = false; if (surface_store_tag != m_rtts.cache_tag) { update_framebuffer_sourced = true; surface_store_tag = m_rtts.cache_tag; } for (int i = 0; i < rsx::limits::fragment_textures_count; ++i) { if (!fs_sampler_state[i]) fs_sampler_state[i] = std::make_unique(); if (m_samplers_dirty || m_textures_dirty[i] || (update_framebuffer_sourced && fs_sampler_state[i]->upload_context == rsx::texture_upload_context::framebuffer_storage)) { auto sampler_state = static_cast(fs_sampler_state[i].get()); if (rsx::method_registers.fragment_textures[i].enabled()) { *sampler_state = m_gl_texture_cache.upload_texture(unused, rsx::method_registers.fragment_textures[i], m_rtts); if (m_textures_dirty[i]) m_gl_sampler_states[i].apply(rsx::method_registers.fragment_textures[i], fs_sampler_state[i].get()); } else { *sampler_state = {}; } m_textures_dirty[i] = false; } } for (int i = 0; i < rsx::limits::vertex_textures_count; ++i) { if (!vs_sampler_state[i]) vs_sampler_state[i] = std::make_unique(); if (m_samplers_dirty || m_vertex_textures_dirty[i] || (update_framebuffer_sourced && vs_sampler_state[i]->upload_context == rsx::texture_upload_context::framebuffer_storage)) { auto sampler_state = static_cast(vs_sampler_state[i].get()); if (rsx::method_registers.vertex_textures[i].enabled()) { *sampler_state = m_gl_texture_cache.upload_texture(unused, rsx::method_registers.vertex_textures[i], m_rtts); } else *sampler_state = {}; m_vertex_textures_dirty[i] = false; } } m_samplers_dirty.store(false); std::chrono::time_point textures_end = steady_clock::now(); m_textures_upload_time += (u32)std::chrono::duration_cast(textures_end - textures_start).count(); } std::chrono::time_point program_start = steady_clock::now(); //Load program here since it is dependent on vertex state load_program(upload_info); std::chrono::time_point program_stop = steady_clock::now(); m_begin_time += (u32)std::chrono::duration_cast(program_stop - program_start).count(); if (manually_flush_ring_buffers) { m_attrib_ring_buffer->unmap(); m_index_ring_buffer->unmap(); } else { //DMA push; not needed with MAP_COHERENT //glMemoryBarrier(GL_CLIENT_MAPPED_BUFFER_BARRIER_BIT); } //Bind textures and resolve external copy operations std::chrono::time_point textures_start = steady_clock::now(); int unused_location; for (int i = 0; i < rsx::limits::fragment_textures_count; ++i) { if (m_program->uniforms.has_location("tex" + std::to_string(i), &unused_location)) { auto sampler_state = static_cast(fs_sampler_state[i].get()); auto &tex = rsx::method_registers.fragment_textures[i]; glActiveTexture(GL_TEXTURE0 + i); if (tex.enabled()) { GLenum target = gl::get_target(sampler_state->image_type); if (sampler_state->image_handle) { glBindTexture(target, sampler_state->image_handle); } else if (sampler_state->external_subresource_desc.external_handle) { void *unused = nullptr; glBindTexture(target, m_gl_texture_cache.create_temporary_subresource(unused, sampler_state->external_subresource_desc)); } else { glBindTexture(target, m_null_textures[target]->id()); } } else { glBindTexture(GL_TEXTURE_1D, m_null_textures[GL_TEXTURE_1D]->id()); glBindTexture(GL_TEXTURE_2D, m_null_textures[GL_TEXTURE_2D]->id()); glBindTexture(GL_TEXTURE_3D, m_null_textures[GL_TEXTURE_3D]->id()); glBindTexture(GL_TEXTURE_CUBE_MAP, m_null_textures[GL_TEXTURE_CUBE_MAP]->id()); } } } for (int i = 0; i < rsx::limits::vertex_textures_count; ++i) { if (m_program->uniforms.has_location("vtex" + std::to_string(i), &unused_location)) { auto sampler_state = static_cast(vs_sampler_state[i].get()); glActiveTexture(GL_TEXTURE0 + rsx::limits::fragment_textures_count + i); if (sampler_state->image_handle) { glBindTexture(GL_TEXTURE_2D, sampler_state->image_handle); } else if (sampler_state->external_subresource_desc.external_handle) { void *unused = nullptr; glBindTexture(GL_TEXTURE_2D, m_gl_texture_cache.create_temporary_subresource(unused, sampler_state->external_subresource_desc)); } else { glBindTexture(GL_TEXTURE_2D, GL_NONE); } } } std::chrono::time_point textures_end = steady_clock::now(); m_textures_upload_time += (u32)std::chrono::duration_cast(textures_end - textures_start).count(); update_draw_state(); //Check if depth buffer is bound and valid //If ds is not initialized clear it; it seems new depth textures should have depth cleared auto copy_rtt_contents = [](gl::render_target *surface) { if (surface->get_compatible_internal_format() == surface->old_contents->get_compatible_internal_format()) { //Copy data from old contents onto this one //1. Clip a rectangular region defning the data //2. Perform a GPU blit u16 parent_w = surface->old_contents->width(); u16 parent_h = surface->old_contents->height(); u16 copy_w, copy_h; std::tie(std::ignore, std::ignore, copy_w, copy_h) = rsx::clip_region(parent_w, parent_h, 0, 0, surface->width(), surface->height(), true); glCopyImageSubData(surface->old_contents->id(), GL_TEXTURE_2D, 0, 0, 0, 0, surface->id(), GL_TEXTURE_2D, 0, 0, 0, 0, copy_w, copy_h, 1); surface->set_cleared(); } //TODO: download image contents and reupload them or do a memory cast to copy memory contents if not compatible surface->old_contents = nullptr; }; //Check if we have any 'recycled' surfaces in memory and if so, clear them std::vector buffers_to_clear; bool clear_all_color = true; bool clear_depth = false; for (int index = 0; index < 4; index++) { if (std::get<0>(m_rtts.m_bound_render_targets[index]) != 0) { if (std::get<1>(m_rtts.m_bound_render_targets[index])->cleared()) clear_all_color = false; else buffers_to_clear.push_back(index); } } gl::render_target *ds = std::get<1>(m_rtts.m_bound_depth_stencil); if (ds && !ds->cleared()) { clear_depth = true; } //Temporarily disable pixel tests glDisable(GL_SCISSOR_TEST); if (clear_depth || buffers_to_clear.size() > 0) { GLenum mask = 0; if (clear_depth) { gl_state.depth_mask(GL_TRUE); gl_state.clear_depth(1.0); gl_state.clear_stencil(255); mask |= GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT; } if (clear_all_color) mask |= GL_COLOR_BUFFER_BIT; glClear(mask); if (buffers_to_clear.size() > 0 && !clear_all_color) { GLfloat colors[] = { 0.f, 0.f, 0.f, 0.f }; //It is impossible for the render target to be typa A or B here (clear all would have been flagged) for (auto &i: buffers_to_clear) glClearBufferfv(draw_fbo.id(), i, colors); } if (clear_depth) gl_state.depth_mask(rsx::method_registers.depth_write_enabled()); ds->set_cleared(); } if (ds && ds->old_contents != nullptr && ds->get_rsx_pitch() == ds->old_contents->get_rsx_pitch() && ds->old_contents->get_compatible_internal_format() == gl::texture::internal_format::rgba8) { m_depth_converter.run(ds->width(), ds->height(), ds->id(), ds->old_contents->id()); ds->old_contents = nullptr; } if (g_cfg.video.strict_rendering_mode) { if (ds && ds->old_contents != nullptr) copy_rtt_contents(ds); for (auto &rtt : m_rtts.m_bound_render_targets) { if (auto surface = std::get<1>(rtt)) { if (surface->old_contents != nullptr) copy_rtt_contents(surface); } } } else { // Old contents are one use only. Keep the depth conversion check from firing over and over if (ds) ds->old_contents = nullptr; } glEnable(GL_SCISSOR_TEST); std::chrono::time_point draw_start = steady_clock::now(); if (g_cfg.video.debug_output) { m_program->validate(); } const GLenum draw_mode = gl::draw_mode(rsx::method_registers.current_draw_clause.primitive); bool single_draw = !supports_multidraw || (rsx::method_registers.current_draw_clause.first_count_commands.size() <= 1 || rsx::method_registers.current_draw_clause.is_disjoint_primitive); if (upload_info.index_info) { const GLenum index_type = std::get<0>(upload_info.index_info.value()); const u32 index_offset = std::get<1>(upload_info.index_info.value()); const bool restarts_valid = gl::is_primitive_native(rsx::method_registers.current_draw_clause.primitive) && !rsx::method_registers.current_draw_clause.is_disjoint_primitive; if (gl_state.enable(restarts_valid && rsx::method_registers.restart_index_enabled(), GL_PRIMITIVE_RESTART)) { glPrimitiveRestartIndex((index_type == GL_UNSIGNED_SHORT)? 0xffff: 0xffffffff); } if (single_draw) { glDrawElements(draw_mode, upload_info.vertex_draw_count, index_type, (GLvoid *)(uintptr_t)index_offset); } else { std::vector counts; std::vector offsets; const auto draw_count = rsx::method_registers.current_draw_clause.first_count_commands.size(); const u32 type_scale = (index_type == GL_UNSIGNED_SHORT) ? 1 : 2; uintptr_t index_ptr = index_offset; counts.reserve(draw_count); offsets.reserve(draw_count); for (const auto &range : rsx::method_registers.current_draw_clause.first_count_commands) { const auto index_size = get_index_count(rsx::method_registers.current_draw_clause.primitive, range.second); counts.push_back(index_size); offsets.push_back((const GLvoid*)index_ptr); index_ptr += (index_size << type_scale); } glMultiDrawElements(draw_mode, counts.data(), index_type, offsets.data(), (GLsizei)draw_count); } } else { if (single_draw) { glDrawArrays(draw_mode, 0, upload_info.vertex_draw_count); } else { u32 base_index = rsx::method_registers.current_draw_clause.first_count_commands.front().first; if (gl::get_driver_caps().vendor_AMD == false) { std::vector firsts; std::vector counts; const auto draw_count = rsx::method_registers.current_draw_clause.first_count_commands.size(); firsts.reserve(draw_count); counts.reserve(draw_count); for (const auto &range : rsx::method_registers.current_draw_clause.first_count_commands) { firsts.push_back(range.first - base_index); counts.push_back(range.second); } glMultiDrawArrays(draw_mode, firsts.data(), counts.data(), (GLsizei)draw_count); } else { //MultiDrawArrays is broken on some primitive types using AMD. One known type is GL_TRIANGLE_STRIP but there could be more for (const auto &range : rsx::method_registers.current_draw_clause.first_count_commands) { glDrawArrays(draw_mode, range.first - base_index, range.second); } } } } m_attrib_ring_buffer->notify(); m_index_ring_buffer->notify(); m_vertex_state_buffer->notify(); m_fragment_constants_buffer->notify(); m_transform_constants_buffer->notify(); std::chrono::time_point draw_end = steady_clock::now(); m_draw_time += (u32)std::chrono::duration_cast(draw_end - draw_start).count(); m_draw_calls++; synchronize_buffers(); rsx::thread::end(); } void GLGSRender::set_viewport() { //NOTE: scale offset matrix already contains the viewport transformation const auto clip_width = rsx::apply_resolution_scale(rsx::method_registers.surface_clip_width(), true); const auto clip_height = rsx::apply_resolution_scale(rsx::method_registers.surface_clip_height(), true); glViewport(0, 0, clip_width, clip_height); u16 scissor_x = rsx::apply_resolution_scale(rsx::method_registers.scissor_origin_x(), false); u16 scissor_w = rsx::apply_resolution_scale(rsx::method_registers.scissor_width(), true); u16 scissor_y = rsx::apply_resolution_scale(rsx::method_registers.scissor_origin_y(), false); u16 scissor_h = rsx::apply_resolution_scale(rsx::method_registers.scissor_height(), true); //Do not bother drawing anything if output is zero sized //TODO: Clip scissor region if (scissor_x >= clip_width || scissor_y >= clip_height || scissor_w == 0 || scissor_h == 0) { if (!g_cfg.video.strict_rendering_mode) { framebuffer_status_valid = false; return; } } //NOTE: window origin does not affect scissor region (probably only affects viewport matrix; already applied) //See LIMBO [NPUB-30373] which uses shader window origin = top glScissor(scissor_x, scissor_y, scissor_w, scissor_h); glEnable(GL_SCISSOR_TEST); } void GLGSRender::on_init_thread() { GSRender::on_init_thread(); gl::init(); //Enable adaptive vsync if vsync is requested gl::set_swapinterval(g_cfg.video.vsync ? -1 : 0); if (g_cfg.video.debug_output) gl::enable_debugging(); LOG_NOTICE(RSX, "%s", (const char*)glGetString(GL_VERSION)); LOG_NOTICE(RSX, "%s", (const char*)glGetString(GL_SHADING_LANGUAGE_VERSION)); LOG_NOTICE(RSX, "%s", (const char*)glGetString(GL_VENDOR)); auto& gl_caps = gl::get_driver_caps(); if (!gl_caps.ARB_texture_buffer_supported) { fmt::throw_exception("Failed to initialize OpenGL renderer. ARB_texture_buffer_object is required but not supported by your GPU"); } if (!gl_caps.ARB_dsa_supported && !gl_caps.EXT_dsa_supported) { fmt::throw_exception("Failed to initialize OpenGL renderer. ARB_direct_state_access or EXT_direct_state_access is required but not supported by your GPU"); } if (!gl_caps.ARB_depth_buffer_float_supported && g_cfg.video.force_high_precision_z_buffer) { LOG_WARNING(RSX, "High precision Z buffer requested but your GPU does not support GL_ARB_depth_buffer_float. Option ignored."); } if (!gl_caps.ARB_texture_barrier_supported && !gl_caps.NV_texture_barrier_supported && !g_cfg.video.strict_rendering_mode) { LOG_WARNING(RSX, "Texture barriers are not supported by your GPU. Feedback loops will have undefined results."); } //Use industry standard resource alignment values as defaults m_uniform_buffer_offset_align = 256; m_min_texbuffer_alignment = 256; m_max_texbuffer_size = 0; glEnable(GL_VERTEX_PROGRAM_POINT_SIZE); glGetIntegerv(GL_UNIFORM_BUFFER_OFFSET_ALIGNMENT, &m_uniform_buffer_offset_align); glGetIntegerv(GL_TEXTURE_BUFFER_OFFSET_ALIGNMENT, &m_min_texbuffer_alignment); glGetIntegerv(GL_MAX_TEXTURE_BUFFER_SIZE, &m_max_texbuffer_size); m_vao.create(); //Set min alignment to 16-bytes for SSE optimizations with aligned addresses to work m_min_texbuffer_alignment = std::max(m_min_texbuffer_alignment, 16); m_uniform_buffer_offset_align = std::max(m_uniform_buffer_offset_align, 16); LOG_NOTICE(RSX, "Supported texel buffer size reported: %d bytes", m_max_texbuffer_size); if (m_max_texbuffer_size < (16 * 0x100000)) { LOG_ERROR(RSX, "Max texture buffer size supported is less than 16M which is useless. Expect undefined behaviour."); m_max_texbuffer_size = (16 * 0x100000); } const u32 texture_index_offset = rsx::limits::fragment_textures_count + rsx::limits::vertex_textures_count; //Array stream buffer { auto &tex = m_gl_persistent_stream_buffer; tex.create(); tex.set_target(gl::texture::target::textureBuffer); glActiveTexture(GL_TEXTURE0 + texture_index_offset); tex.bind(); } //Register stream buffer { auto &tex = m_gl_volatile_stream_buffer; tex.create(); tex.set_target(gl::texture::target::textureBuffer); glActiveTexture(GL_TEXTURE0 + texture_index_offset + 1); tex.bind(); } //Fallback null texture instead of relying on texture0 { std::vector pixeldata = {0, 0, 0, 0}; //1D auto tex1D = std::make_unique(); tex1D->create(); tex1D->set_target(gl::texture::target::texture1D); tex1D->config().width(1).min_lod(0.f).max_lod(0.f).pixels(pixeldata.data()).apply(); //2D auto tex2D = std::make_unique(); tex2D->create(); tex2D->set_target(gl::texture::target::texture2D); tex2D->config().width(1).height(1).min_lod(0.f).max_lod(0.f).pixels(pixeldata.data()).apply(); //3D auto tex3D = std::make_unique(); tex3D->create(); tex3D->set_target(gl::texture::target::texture3D); tex3D->config().width(1).height(1).depth(1).min_lod(0.f).max_lod(0.f).pixels(pixeldata.data()).apply(); //CUBE auto texCUBE = std::make_unique(); texCUBE->create(); texCUBE->set_target(gl::texture::target::textureCUBE); texCUBE->config().width(1).height(1).depth(1).min_lod(0.f).max_lod(0.f).pixels(pixeldata.data()).apply(); m_null_textures[GL_TEXTURE_1D] = std::move(tex1D); m_null_textures[GL_TEXTURE_2D] = std::move(tex2D); m_null_textures[GL_TEXTURE_3D] = std::move(tex3D); m_null_textures[GL_TEXTURE_CUBE_MAP] = std::move(texCUBE); } if (!gl_caps.ARB_buffer_storage_supported) { LOG_WARNING(RSX, "Forcing use of legacy OpenGL buffers because ARB_buffer_storage is not supported"); // TODO: do not modify config options g_cfg.video.gl_legacy_buffers.from_string("true"); } if (g_cfg.video.gl_legacy_buffers) { LOG_WARNING(RSX, "Using legacy openGL buffers."); manually_flush_ring_buffers = true; m_attrib_ring_buffer.reset(new gl::legacy_ring_buffer()); m_transform_constants_buffer.reset(new gl::legacy_ring_buffer()); m_fragment_constants_buffer.reset(new gl::legacy_ring_buffer()); m_vertex_state_buffer.reset(new gl::legacy_ring_buffer()); m_index_ring_buffer.reset(new gl::legacy_ring_buffer()); } else { m_attrib_ring_buffer.reset(new gl::ring_buffer()); m_transform_constants_buffer.reset(new gl::ring_buffer()); m_fragment_constants_buffer.reset(new gl::ring_buffer()); m_vertex_state_buffer.reset(new gl::ring_buffer()); m_index_ring_buffer.reset(new gl::ring_buffer()); } m_attrib_ring_buffer->create(gl::buffer::target::texture, std::min(m_max_texbuffer_size, 256 * 0x100000)); m_index_ring_buffer->create(gl::buffer::target::element_array, std::min(m_max_texbuffer_size, 64 * 0x100000)); m_transform_constants_buffer->create(gl::buffer::target::uniform, std::min(m_max_texbuffer_size, 16 * 0x100000)); m_fragment_constants_buffer->create(gl::buffer::target::uniform, std::min(m_max_texbuffer_size, 16 * 0x100000)); m_vertex_state_buffer->create(gl::buffer::target::uniform, std::min(m_max_texbuffer_size, 16 * 0x100000)); m_gl_persistent_stream_buffer.copy_from(*m_attrib_ring_buffer, GL_R8UI, 0, (u32)m_attrib_ring_buffer->size()); m_gl_volatile_stream_buffer.copy_from(*m_attrib_ring_buffer, GL_R8UI, 0, (u32)m_attrib_ring_buffer->size()); m_vao.element_array_buffer = *m_index_ring_buffer; if (g_cfg.video.overlay) { if (gl_caps.ARB_shader_draw_parameters_supported) { m_text_printer.init(); m_text_printer.set_enabled(true); } } for (int i = 0; i < rsx::limits::fragment_textures_count; ++i) { m_gl_sampler_states[i].create(); m_gl_sampler_states[i].bind(i); } //Occlusion query for (u32 i = 0; i < occlusion_query_count; ++i) { GLuint handle = 0; auto &query = occlusion_query_data[i]; glGenQueries(1, &handle); query.driver_handle = (u64)handle; query.pending = false; query.active = false; query.result = 0; } //Clip planes are shader controlled; enable all planes driver-side glEnable(GL_CLIP_DISTANCE0 + 0); glEnable(GL_CLIP_DISTANCE0 + 1); glEnable(GL_CLIP_DISTANCE0 + 2); glEnable(GL_CLIP_DISTANCE0 + 3); glEnable(GL_CLIP_DISTANCE0 + 4); glEnable(GL_CLIP_DISTANCE0 + 5); m_depth_converter.create(); m_ui_renderer.create(); m_gl_texture_cache.initialize(); m_thread_id = std::this_thread::get_id(); if (!supports_native_ui) { m_frame->disable_wm_event_queue(); m_frame->hide(); m_shaders_cache->load(nullptr); m_frame->enable_wm_event_queue(); m_frame->show(); } else { struct native_helper : gl::shader_cache::progress_dialog_helper { rsx::thread *owner = nullptr; rsx::overlays::message_dialog *dlg = nullptr; native_helper(GLGSRender *ptr) : owner(ptr) {} void create() override { MsgDialogType type = {}; type.disable_cancel = true; type.progress_bar_count = 1; dlg = owner->shell_open_message_dialog(); dlg->show("Loading precompiled shaders from disk...", type, [](s32 status) { if (status != CELL_OK) Emu.Stop(); }); } void update_msg(u32 processed, u32 entry_count) override { dlg->progress_bar_set_message(0, fmt::format("Loading pipeline object %u of %u", processed, entry_count)); owner->flip(0); } void inc_value(u32 value) override { dlg->progress_bar_increment(0, (f32)value); owner->flip(0); } void close() override { dlg->return_code = CELL_OK; dlg->close(); } } helper(this); m_frame->enable_wm_event_queue(); m_shaders_cache->load(&helper); } } void GLGSRender::on_exit() { m_prog_buffer.clear(); if (draw_fbo) { draw_fbo.remove(); } if (m_flip_fbo) { m_flip_fbo.remove(); } if (m_flip_tex_color) { m_flip_tex_color.remove(); } if (m_vao) { m_vao.remove(); } m_gl_persistent_stream_buffer.remove(); m_gl_volatile_stream_buffer.remove(); for (auto &sampler : m_gl_sampler_states) { sampler.remove(); } for (auto &tex : m_null_textures) { tex.second->remove(); } if (m_attrib_ring_buffer) { m_attrib_ring_buffer->remove(); } if (m_transform_constants_buffer) { m_transform_constants_buffer->remove(); } if (m_fragment_constants_buffer) { m_fragment_constants_buffer->remove(); } if (m_vertex_state_buffer) { m_vertex_state_buffer->remove(); } if (m_index_ring_buffer) { m_index_ring_buffer->remove(); } m_text_printer.close(); m_gl_texture_cache.destroy(); m_depth_converter.destroy(); m_ui_renderer.destroy(); for (u32 i = 0; i < occlusion_query_count; ++i) { auto &query = occlusion_query_data[i]; query.active = false; query.pending = false; GLuint handle = (GLuint)query.driver_handle; glDeleteQueries(1, &handle); query.driver_handle = 0; } glFlush(); glFinish(); GSRender::on_exit(); } void GLGSRender::clear_surface(u32 arg) { if (skip_frame || !framebuffer_status_valid) return; if ((arg & 0xf3) == 0) return; GLbitfield mask = 0; rsx::surface_depth_format surface_depth_format = rsx::method_registers.surface_depth_fmt(); if (arg & 0x1) { u32 max_depth_value = get_max_depth_value(surface_depth_format); u32 clear_depth = rsx::method_registers.z_clear_value(surface_depth_format == rsx::surface_depth_format::z24s8); gl_state.depth_mask(GL_TRUE); gl_state.clear_depth(f32(clear_depth) / max_depth_value); mask |= GLenum(gl::buffers::depth); gl::render_target *ds = std::get<1>(m_rtts.m_bound_depth_stencil); if (ds && !ds->cleared()) { ds->set_cleared(); ds->old_contents = nullptr; } } if (surface_depth_format == rsx::surface_depth_format::z24s8 && (arg & 0x2)) { u8 clear_stencil = rsx::method_registers.stencil_clear_value(); gl_state.stencil_mask(rsx::method_registers.stencil_mask()); gl_state.clear_stencil(clear_stencil); mask |= GLenum(gl::buffers::stencil); } if (arg & 0xf0) { u8 clear_a = rsx::method_registers.clear_color_a(); u8 clear_r = rsx::method_registers.clear_color_r(); u8 clear_g = rsx::method_registers.clear_color_g(); u8 clear_b = rsx::method_registers.clear_color_b(); gl_state.color_mask(arg & 0xf0); gl_state.clear_color(clear_r, clear_g, clear_b, clear_a); mask |= GLenum(gl::buffers::color); for (auto &rtt : m_rtts.m_bound_render_targets) { if (std::get<0>(rtt) != 0) { std::get<1>(rtt)->set_cleared(true); std::get<1>(rtt)->old_contents = nullptr; } } } glClear(mask); } bool GLGSRender::do_method(u32 cmd, u32 arg) { switch (cmd) { case NV4097_CLEAR_SURFACE: { if (arg & 0xF3) { //Only do all this if we have actual work to do u8 ctx = rsx::framebuffer_creation_context::context_draw; if (arg & 0xF0) ctx |= rsx::framebuffer_creation_context::context_clear_color; if (arg & 0x3) ctx |= rsx::framebuffer_creation_context::context_clear_depth; init_buffers((rsx::framebuffer_creation_context)ctx, true); synchronize_buffers(); clear_surface(arg); } return true; } case NV4097_CLEAR_ZCULL_SURFACE: { // NOP // Clearing zcull memory does not modify depth/stencil buffers 'bound' to the zcull region return true; } case NV4097_TEXTURE_READ_SEMAPHORE_RELEASE: case NV4097_BACK_END_WRITE_SEMAPHORE_RELEASE: flush_draw_buffers = true; return true; } return false; } bool GLGSRender::check_program_state() { return (rsx::method_registers.shader_program_address() != 0); } void GLGSRender::load_program(const vertex_upload_info& upload_info) { get_current_fragment_program(fs_sampler_state); verify(HERE), current_fragment_program.valid; get_current_vertex_program(); auto &fragment_program = current_fragment_program; auto &vertex_program = current_vertex_program; vertex_program.skip_vertex_input_check = true; //not needed for us since decoding is done server side fragment_program.unnormalized_coords = 0; //unused void* pipeline_properties = nullptr; m_program = &m_prog_buffer.getGraphicPipelineState(vertex_program, fragment_program, pipeline_properties); m_program->use(); if (m_prog_buffer.check_cache_missed()) { m_shaders_cache->store(pipeline_properties, vertex_program, fragment_program); //Notify the user with HUD notification if (!m_custom_ui) { //Create notification but do not draw it at this time. No need to spam flip requests m_custom_ui = std::make_unique(); } else if (auto casted = dynamic_cast(m_custom_ui.get())) { //Probe the notification casted->touch(); } } u8 *buf; u32 vertex_state_offset; u32 vertex_constants_offset; u32 fragment_constants_offset; const u32 fragment_constants_size = (const u32)m_prog_buffer.get_fragment_constants_buffer_size(fragment_program); const u32 fragment_buffer_size = fragment_constants_size + (18 * 4 * sizeof(float)); if (manually_flush_ring_buffers) { m_vertex_state_buffer->reserve_storage_on_heap(512); m_fragment_constants_buffer->reserve_storage_on_heap(align(fragment_buffer_size, 256)); if (m_transform_constants_dirty) m_transform_constants_buffer->reserve_storage_on_heap(8192); } // Vertex state auto mapping = m_vertex_state_buffer->alloc_from_heap(512, m_uniform_buffer_offset_align); buf = static_cast(mapping.first); vertex_state_offset = mapping.second; fill_scale_offset_data(buf, false); fill_user_clip_data(buf + 64); *(reinterpret_cast(buf + 128)) = rsx::method_registers.transform_branch_bits(); *(reinterpret_cast(buf + 132)) = upload_info.vertex_index_base; *(reinterpret_cast(buf + 136)) = rsx::method_registers.point_size(); *(reinterpret_cast(buf + 140)) = rsx::method_registers.clip_min(); *(reinterpret_cast(buf + 144)) = rsx::method_registers.clip_max(); fill_vertex_layout_state(m_vertex_layout, upload_info.allocated_vertex_count, reinterpret_cast(buf + 160), upload_info.persistent_mapping_offset, upload_info.volatile_mapping_offset); if (m_transform_constants_dirty) { // Vertex constants mapping = m_transform_constants_buffer->alloc_from_heap(8192, m_uniform_buffer_offset_align); buf = static_cast(mapping.first); vertex_constants_offset = mapping.second; fill_vertex_program_constants_data(buf); } // Fragment constants mapping = m_fragment_constants_buffer->alloc_from_heap(fragment_buffer_size, m_uniform_buffer_offset_align); buf = static_cast(mapping.first); fragment_constants_offset = mapping.second; if (fragment_constants_size) m_prog_buffer.fill_fragment_constants_buffer({ reinterpret_cast(buf), gsl::narrow(fragment_constants_size) }, fragment_program); // Fragment state fill_fragment_state_buffer(buf+fragment_constants_size, fragment_program); m_vertex_state_buffer->bind_range(0, vertex_state_offset, 512); m_fragment_constants_buffer->bind_range(2, fragment_constants_offset, fragment_buffer_size); if (m_transform_constants_dirty) m_transform_constants_buffer->bind_range(1, vertex_constants_offset, 8192); if (manually_flush_ring_buffers) { m_vertex_state_buffer->unmap(); m_fragment_constants_buffer->unmap(); if (m_transform_constants_dirty) m_transform_constants_buffer->unmap(); } m_transform_constants_dirty = false; } void GLGSRender::update_draw_state() { std::chrono::time_point then = steady_clock::now(); bool color_mask_b = rsx::method_registers.color_mask_b(); bool color_mask_g = rsx::method_registers.color_mask_g(); bool color_mask_r = rsx::method_registers.color_mask_r(); bool color_mask_a = rsx::method_registers.color_mask_a(); gl_state.color_mask(color_mask_r, color_mask_g, color_mask_b, color_mask_a); gl_state.depth_mask(rsx::method_registers.depth_write_enabled()); gl_state.stencil_mask(rsx::method_registers.stencil_mask()); gl_state.enable(rsx::method_registers.depth_clamp_enabled() || !rsx::method_registers.depth_clip_enabled(), GL_DEPTH_CLAMP); if (gl_state.enable(rsx::method_registers.depth_test_enabled(), GL_DEPTH_TEST)) { gl_state.depth_func(comparison_op(rsx::method_registers.depth_func())); } if (glDepthBoundsEXT && (gl_state.enable(rsx::method_registers.depth_bounds_test_enabled(), GL_DEPTH_BOUNDS_TEST_EXT))) { gl_state.depth_bounds(rsx::method_registers.depth_bounds_min(), rsx::method_registers.depth_bounds_max()); } gl_state.enable(rsx::method_registers.dither_enabled(), GL_DITHER); if (gl_state.enable(rsx::method_registers.blend_enabled(), GL_BLEND)) { glBlendFuncSeparate(blend_factor(rsx::method_registers.blend_func_sfactor_rgb()), blend_factor(rsx::method_registers.blend_func_dfactor_rgb()), blend_factor(rsx::method_registers.blend_func_sfactor_a()), blend_factor(rsx::method_registers.blend_func_dfactor_a())); auto blend_colors = rsx::get_constant_blend_colors(); glBlendColor(blend_colors[0], blend_colors[1], blend_colors[2], blend_colors[3]); glBlendEquationSeparate(blend_equation(rsx::method_registers.blend_equation_rgb()), blend_equation(rsx::method_registers.blend_equation_a())); } if (gl_state.enable(rsx::method_registers.stencil_test_enabled(), GL_STENCIL_TEST)) { glStencilFunc(comparison_op(rsx::method_registers.stencil_func()), rsx::method_registers.stencil_func_ref(), rsx::method_registers.stencil_func_mask()); glStencilOp(stencil_op(rsx::method_registers.stencil_op_fail()), stencil_op(rsx::method_registers.stencil_op_zfail()), stencil_op(rsx::method_registers.stencil_op_zpass())); if (rsx::method_registers.two_sided_stencil_test_enabled()) { glStencilMaskSeparate(GL_BACK, rsx::method_registers.back_stencil_mask()); glStencilFuncSeparate(GL_BACK, comparison_op(rsx::method_registers.back_stencil_func()), rsx::method_registers.back_stencil_func_ref(), rsx::method_registers.back_stencil_func_mask()); glStencilOpSeparate(GL_BACK, stencil_op(rsx::method_registers.back_stencil_op_fail()), stencil_op(rsx::method_registers.back_stencil_op_zfail()), stencil_op(rsx::method_registers.back_stencil_op_zpass())); } } gl_state.enablei(rsx::method_registers.blend_enabled_surface_1(), GL_BLEND, 1); gl_state.enablei(rsx::method_registers.blend_enabled_surface_2(), GL_BLEND, 2); gl_state.enablei(rsx::method_registers.blend_enabled_surface_3(), GL_BLEND, 3); if (gl_state.enable(rsx::method_registers.logic_op_enabled(), GL_COLOR_LOGIC_OP)) { gl_state.logic_op(logic_op(rsx::method_registers.logic_operation())); } gl_state.line_width(rsx::method_registers.line_width()); gl_state.enable(rsx::method_registers.line_smooth_enabled(), GL_LINE_SMOOTH); gl_state.enable(rsx::method_registers.poly_offset_point_enabled(), GL_POLYGON_OFFSET_POINT); gl_state.enable(rsx::method_registers.poly_offset_line_enabled(), GL_POLYGON_OFFSET_LINE); gl_state.enable(rsx::method_registers.poly_offset_fill_enabled(), GL_POLYGON_OFFSET_FILL); //offset_bias is the constant factor, multiplied by the implementation factor R //offst_scale is the slope factor, multiplied by the triangle slope factor M gl_state.polygon_offset(rsx::method_registers.poly_offset_scale(), rsx::method_registers.poly_offset_bias()); if (gl_state.enable(rsx::method_registers.cull_face_enabled(), GL_CULL_FACE)) { gl_state.cull_face(cull_face(rsx::method_registers.cull_face_mode())); } gl_state.front_face(front_face(rsx::method_registers.front_face_mode())); //TODO //NV4097_SET_ANISO_SPREAD //NV4097_SET_SPECULAR_ENABLE //NV4097_SET_TWO_SIDE_LIGHT_EN //NV4097_SET_FLAT_SHADE_OP //NV4097_SET_EDGE_FLAG //NV4097_SET_COLOR_KEY_COLOR //NV4097_SET_SHADER_CONTROL //NV4097_SET_ZMIN_MAX_CONTROL //NV4097_SET_ANTI_ALIASING_CONTROL //NV4097_SET_CLIP_ID_TEST_ENABLE std::chrono::time_point now = steady_clock::now(); m_begin_time += (u32)std::chrono::duration_cast(now - then).count(); } void GLGSRender::flip(int buffer) { if (skip_frame) { m_frame->flip(m_context, true); rsx::thread::flip(buffer); if (!skip_frame) { m_draw_calls = 0; m_begin_time = 0; m_draw_time = 0; m_vertex_upload_time = 0; m_textures_upload_time = 0; } return; } gl::screen.clear(gl::buffers::color); u32 buffer_width = display_buffers[buffer].width; u32 buffer_height = display_buffers[buffer].height; u32 buffer_pitch = display_buffers[buffer].pitch; if ((u32)buffer < display_buffers_count && buffer_width && buffer_height && buffer_pitch) { // Calculate blit coordinates coordi aspect_ratio; sizei csize(m_frame->client_width(), m_frame->client_height()); sizei new_size = csize; if (!g_cfg.video.stretch_to_display_area) { const double aq = (double)buffer_width / buffer_height; const double rq = (double)new_size.width / new_size.height; const double q = aq / rq; if (q > 1.0) { new_size.height = int(new_size.height / q); aspect_ratio.y = (csize.height - new_size.height) / 2; } else if (q < 1.0) { new_size.width = int(new_size.width * q); aspect_ratio.x = (csize.width - new_size.width) / 2; } } aspect_ratio.size = new_size; // Find the source image rsx::tiled_region buffer_region = get_tiled_address(display_buffers[buffer].offset, CELL_GCM_LOCATION_LOCAL); u32 absolute_address = buffer_region.address + buffer_region.base; m_flip_fbo.recreate(); m_flip_fbo.bind(); const u32 size = buffer_pitch * buffer_height; if (auto render_target_texture = m_rtts.get_texture_from_render_target_if_applicable(absolute_address)) { buffer_width = render_target_texture->width(); buffer_height = render_target_texture->height(); m_flip_fbo.color = *render_target_texture; m_flip_fbo.read_buffer(m_flip_fbo.color); } else if (auto surface = m_gl_texture_cache.find_texture_from_dimensions(absolute_address)) { //Hack - this should be the first location to check for output //The render might have been done offscreen or in software and a blit used to display m_flip_fbo.color = surface->get_raw_view(); m_flip_fbo.read_buffer(m_flip_fbo.color); } else { LOG_WARNING(RSX, "Flip texture was not found in cache. Uploading surface from CPU"); if (!m_flip_tex_color || m_flip_tex_color.size() != sizei{ (int)buffer_width, (int)buffer_height }) { m_flip_tex_color.recreate(gl::texture::target::texture2D); m_flip_tex_color.config() .size({ (int)buffer_width, (int)buffer_height }) .type(gl::texture::type::uint_8_8_8_8) .format(gl::texture::format::bgra); m_flip_tex_color.pixel_unpack_settings().aligment(1).row_length(buffer_pitch / 4); } if (buffer_region.tile) { std::unique_ptr temp(new u8[buffer_height * buffer_pitch]); buffer_region.read(temp.get(), buffer_width, buffer_height, buffer_pitch); m_flip_tex_color.copy_from(temp.get(), gl::texture::format::bgra, gl::texture::type::uint_8_8_8_8); } else { m_flip_tex_color.copy_from(buffer_region.ptr, gl::texture::format::bgra, gl::texture::type::uint_8_8_8_8); } m_flip_fbo.color = m_flip_tex_color; m_flip_fbo.read_buffer(m_flip_fbo.color); } // Blit source image to the screen // Disable scissor test (affects blit) glDisable(GL_SCISSOR_TEST); areai screen_area = coordi({}, { (int)buffer_width, (int)buffer_height }); m_flip_fbo.blit(gl::screen, screen_area, areai(aspect_ratio).flipped_vertical(), gl::buffers::color, gl::filter::linear); } if (m_custom_ui) { gl::screen.bind(); glViewport(0, 0, m_frame->client_width(), m_frame->client_height()); m_ui_renderer.run(m_frame->client_width(), m_frame->client_height(), 0, *m_custom_ui.get()); } if (g_cfg.video.overlay) { gl::screen.bind(); glViewport(0, 0, m_frame->client_width(), m_frame->client_height()); m_text_printer.print_text(0, 0, m_frame->client_width(), m_frame->client_height(), "draw calls: " + std::to_string(m_draw_calls)); m_text_printer.print_text(0, 18, m_frame->client_width(), m_frame->client_height(), "draw call setup: " + std::to_string(m_begin_time) + "us"); m_text_printer.print_text(0, 36, m_frame->client_width(), m_frame->client_height(), "vertex upload time: " + std::to_string(m_vertex_upload_time) + "us"); m_text_printer.print_text(0, 54, m_frame->client_width(), m_frame->client_height(), "textures upload time: " + std::to_string(m_textures_upload_time) + "us"); m_text_printer.print_text(0, 72, m_frame->client_width(), m_frame->client_height(), "draw call execution: " + std::to_string(m_draw_time) + "us"); auto num_dirty_textures = m_gl_texture_cache.get_unreleased_textures_count(); auto texture_memory_size = m_gl_texture_cache.get_texture_memory_in_use() / (1024 * 1024); m_text_printer.print_text(0, 108, m_frame->client_width(), m_frame->client_height(), "Unreleased textures: " + std::to_string(num_dirty_textures)); m_text_printer.print_text(0, 126, m_frame->client_width(), m_frame->client_height(), "Texture memory: " + std::to_string(texture_memory_size) + "M"); } m_frame->flip(m_context); rsx::thread::flip(buffer); // Cleanup m_gl_texture_cache.on_frame_end(); m_rtts.free_invalidated(); m_vertex_cache->purge(); //If we are skipping the next frame, do not reset perf counters if (skip_frame) return; m_draw_calls = 0; m_begin_time = 0; m_draw_time = 0; m_vertex_upload_time = 0; m_textures_upload_time = 0; } u64 GLGSRender::timestamp() const { GLint64 result; glGetInteger64v(GL_TIMESTAMP, &result); return result; } bool GLGSRender::on_access_violation(u32 address, bool is_writing) { bool can_flush = (std::this_thread::get_id() == m_thread_id); auto result = m_gl_texture_cache.invalidate_address(address, is_writing, can_flush); if (!result.violation_handled) return false; { std::lock_guard lock(m_sampler_mutex); m_samplers_dirty.store(true); } if (result.num_flushable > 0) { work_item &task = post_flush_request(address, result); vm::temporary_unlock(); { std::unique_lock lock(task.guard_mutex); task.cv.wait(lock, [&task] { return task.processed; }); } task.received = true; return true; } return true; } void GLGSRender::on_notify_memory_unmapped(u32 address_base, u32 size) { //Discard all memory in that range without bothering with writeback (Force it for strict?) if (m_gl_texture_cache.invalidate_range(address_base, size, true, true, false).violation_handled) { m_gl_texture_cache.purge_dirty(); { std::lock_guard lock(m_sampler_mutex); m_samplers_dirty.store(true); } } } void GLGSRender::do_local_task(bool /*idle*/) { m_frame->clear_wm_events(); if (!work_queue.empty()) { std::lock_guard lock(queue_guard); work_queue.remove_if([](work_item &q) { return q.received; }); for (work_item& q : work_queue) { if (q.processed) continue; std::unique_lock lock(q.guard_mutex); q.result = m_gl_texture_cache.flush_all(q.section_data); q.processed = true; //Notify thread waiting on this lock.unlock(); q.cv.notify_one(); } } else if (!in_begin_end) { //This will re-engage locks and break the texture cache if another thread is waiting in access violation handler! //Only call when there are no waiters m_gl_texture_cache.do_update(); } if (m_overlay_cleanup_requests.size()) { m_ui_renderer.remove_temp_resources(); m_overlay_cleanup_requests.clear(); } else if (m_custom_ui) { if (!in_begin_end && native_ui_flip_request.load()) { native_ui_flip_request.store(false); flip((s32)current_display_buffer); } } } work_item& GLGSRender::post_flush_request(u32 address, gl::texture_cache::thrashed_set& flush_data) { std::lock_guard lock(queue_guard); work_queue.emplace_back(); work_item &result = work_queue.back(); result.address_to_flush = address; result.section_data = std::move(flush_data); return result; } void GLGSRender::synchronize_buffers() { if (flush_draw_buffers) { write_buffers(); flush_draw_buffers = false; } } bool GLGSRender::scaled_image_from_memory(rsx::blit_src_info& src, rsx::blit_dst_info& dst, bool interpolate) { m_samplers_dirty.store(true); return m_gl_texture_cache.blit(src, dst, interpolate, m_rtts); } void GLGSRender::notify_tile_unbound(u32 tile) { //TODO: Handle texture writeback //u32 addr = rsx::get_address(tiles[tile].offset, tiles[tile].location); //on_notify_memory_unmapped(addr, tiles[tile].size); //m_rtts.invalidate_surface_address(addr, false); } void GLGSRender::begin_occlusion_query(rsx::occlusion_query_info* query) { query->result = 0; glBeginQuery(GL_ANY_SAMPLES_PASSED, (GLuint)query->driver_handle); } void GLGSRender::end_occlusion_query(rsx::occlusion_query_info* query) { glEndQuery(GL_ANY_SAMPLES_PASSED); } bool GLGSRender::check_occlusion_query_status(rsx::occlusion_query_info* query) { GLint status = GL_TRUE; glGetQueryObjectiv((GLuint)query->driver_handle, GL_QUERY_RESULT_AVAILABLE, &status); return status != GL_FALSE; } void GLGSRender::get_occlusion_query_result(rsx::occlusion_query_info* query) { GLint result; glGetQueryObjectiv((GLuint)query->driver_handle, GL_QUERY_RESULT, &result); query->result += result; } void GLGSRender::shell_do_cleanup() { //TODO: Key cleanup requests with UID to identify resources to remove m_overlay_cleanup_requests.push_back(0); }