#include "stdafx.h" #include "Emu/Memory/Memory.h" #include "Emu/System.h" #include "Emu/SysCalls/SysCalls.h" #include "Emu/Memory/atomic_type.h" #include "Emu/CPU/CPUThreadManager.h" #include "Emu/Cell/PPUThread.h" #include "sleep_queue_type.h" #include "sys_time.h" #include "sys_mutex.h" SysCallBase sys_mutex("sys_mutex"); Mutex::~Mutex() { if (u32 tid = owner.read_sync()) { sys_mutex.Notice("Mutex(%d) was owned by thread %d (recursive=%d)", id, tid, recursive); } if (!queue.m_mutex.try_lock()) return; for (u32 i = 0; i < queue.list.size(); i++) { if (u32 owner = queue.list[i]) { sys_mutex.Notice("Mutex(%d) was waited by thread %d", id, owner); } } queue.m_mutex.unlock(); } s32 sys_mutex_create(PPUThread& CPU, vm::ptr mutex_id, vm::ptr attr) { sys_mutex.Log("sys_mutex_create(mutex_id_addr=0x%x, attr_addr=0x%x)", mutex_id.addr(), attr.addr()); LV2_LOCK(0); switch (attr->protocol.ToBE()) { case se32(SYS_SYNC_FIFO): break; case se32(SYS_SYNC_PRIORITY): break; case se32(SYS_SYNC_PRIORITY_INHERIT): sys_mutex.Todo("sys_mutex_create(): SYS_SYNC_PRIORITY_INHERIT"); break; case se32(SYS_SYNC_RETRY): sys_mutex.Error("sys_mutex_create(): SYS_SYNC_RETRY"); return CELL_EINVAL; default: sys_mutex.Error("Unknown protocol attribute(0x%x)", (u32)attr->protocol); return CELL_EINVAL; } bool is_recursive; switch (attr->recursive.ToBE()) { case se32(SYS_SYNC_RECURSIVE): is_recursive = true; break; case se32(SYS_SYNC_NOT_RECURSIVE): is_recursive = false; break; default: sys_mutex.Error("Unknown recursive attribute(0x%x)", (u32)attr->recursive); return CELL_EINVAL; } if (attr->pshared.ToBE() != se32(0x200)) { sys_mutex.Error("Unknown pshared attribute(0x%x)", (u32)attr->pshared); return CELL_EINVAL; } Mutex* mutex = new Mutex((u32)attr->protocol, is_recursive, attr->name_u64); const u32 id = sys_mutex.GetNewId(mutex, TYPE_MUTEX); mutex->id.exchange(id); *mutex_id = id; sys_mutex.Warning("*** mutex created [%s] (protocol=0x%x, recursive=%s): id = %d", std::string(attr->name, 8).c_str(), (u32) attr->protocol, (is_recursive ? "true" : "false"), id); Emu.GetSyncPrimManager().AddSyncPrimData(TYPE_MUTEX, id, std::string(attr->name, 8)); // TODO: unlock mutex when owner thread does exit return CELL_OK; } s32 sys_mutex_destroy(PPUThread& CPU, u32 mutex_id) { sys_mutex.Warning("sys_mutex_destroy(mutex_id=%d)", mutex_id); LV2_LOCK(0); Mutex* mutex; if (!Emu.GetIdManager().GetIDData(mutex_id, mutex)) { return CELL_ESRCH; } if (mutex->cond_count) // check if associated condition variable exists { return CELL_EPERM; } const u32 tid = CPU.GetId(); if (mutex->owner.compare_and_swap_test(0, tid)) // check if locked { return CELL_EBUSY; } if (!mutex->queue.finalize()) { if (!mutex->owner.compare_and_swap_test(tid, 0)) { assert(!"sys_mutex_destroy() failed (busy)"); } return CELL_EBUSY; } if (!mutex->owner.compare_and_swap_test(tid, ~0)) { assert(!"sys_mutex_destroy() failed"); } Emu.GetIdManager().RemoveID(mutex_id); Emu.GetSyncPrimManager().EraseSyncPrimData(TYPE_MUTEX, mutex_id); return CELL_OK; } s32 sys_mutex_lock(PPUThread& CPU, u32 mutex_id, u64 timeout) { sys_mutex.Log("sys_mutex_lock(mutex_id=%d, timeout=%lld)", mutex_id, timeout); Mutex* mutex; if (!Emu.GetIdManager().GetIDData(mutex_id, mutex)) { return CELL_ESRCH; } const u32 tid = CPU.GetId(); if (mutex->owner.read_sync() == tid) { if (mutex->is_recursive) { if (!++mutex->recursive) { return CELL_EKRESOURCE; } return CELL_OK; } else { return CELL_EDEADLK; } } if (mutex->owner.compare_and_swap_test(0, tid)) { mutex->recursive = 1; CPU.owned_mutexes++; return CELL_OK; } mutex->queue.push(tid, mutex->protocol); const u64 time_start = get_system_time(); while (true) { auto old_owner = mutex->owner.compare_and_swap(0, tid); if (!old_owner) { mutex->queue.invalidate(tid); break; } if (old_owner == tid) { break; } std::this_thread::sleep_for(std::chrono::milliseconds(1)); // hack if (timeout && get_system_time() - time_start > timeout) { mutex->queue.invalidate(tid); return CELL_ETIMEDOUT; } if (Emu.IsStopped()) { sys_mutex.Warning("sys_mutex_lock(id=%d) aborted", mutex_id); return CELL_OK; } } mutex->recursive = 1; CPU.owned_mutexes++; return CELL_OK; } s32 sys_mutex_trylock(PPUThread& CPU, u32 mutex_id) { sys_mutex.Log("sys_mutex_trylock(mutex_id=%d)", mutex_id); Mutex* mutex; if (!Emu.GetIdManager().GetIDData(mutex_id, mutex)) { return CELL_ESRCH; } const u32 tid = CPU.GetId(); if (mutex->owner.read_sync() == tid) { if (mutex->is_recursive) { if (!++mutex->recursive) { return CELL_EKRESOURCE; } return CELL_OK; } else { return CELL_EDEADLK; } } if (!mutex->owner.compare_and_swap_test(0, tid)) { return CELL_EBUSY; } mutex->recursive = 1; CPU.owned_mutexes++; return CELL_OK; } s32 sys_mutex_unlock(PPUThread& CPU, u32 mutex_id) { sys_mutex.Log("sys_mutex_unlock(mutex_id=%d)", mutex_id); Mutex* mutex; if (!Emu.GetIdManager().GetIDData(mutex_id, mutex)) { return CELL_ESRCH; } const u32 tid = CPU.GetId(); if (mutex->owner.read_sync() != tid) { return CELL_EPERM; } if (!mutex->recursive || (mutex->recursive != 1 && !mutex->is_recursive)) { sys_mutex.Error("sys_mutex_unlock(%d): wrong recursive value fixed (%d)", mutex_id, mutex->recursive); mutex->recursive = 1; } if (!--mutex->recursive) { if (!mutex->owner.compare_and_swap_test(tid, mutex->queue.pop(mutex->protocol))) { assert(!"sys_mutex_unlock() failed"); } CPU.owned_mutexes--; } return CELL_OK; }