#include "stdafx.h" #include "AArch64Common.h" #include #include #if defined(__APPLE__) #include #endif namespace aarch64 { #if !defined(__APPLE__) struct cpu_entry_t { u32 vendor; u32 part; const char* arch; const char* family; const char* name; }; struct cpu_vendor_t { u32 id; const char* name; const char* short_name; }; static cpu_vendor_t s_vendors_list[] = { { 0x41, "Arm Limited.", "ARM" }, { 0x42, "Broadcom Corporation.", "Broadcom" }, { 0x43, "Cavium Inc.", "Cavium" }, { 0x44, "Digital Equipment Corporation.", "DEC" }, { 0x46, "Fujitsu Ltd.", "Fujitsu" }, { 0x49, "Infineon Technologies AG.", "Infineon" }, { 0x4D, "Motorola or Freescale Semiconductor Inc.", "Motorola" }, { 0x4E, "NVIDIA Corporation.", "NVIDIA" }, { 0x50, "Applied Micro Circuits Corporation.", "AMCC" }, { 0x51, "Qualcomm Inc.", "Qualcomm" }, { 0x56, "Marvell International Ltd.", "Marvell" }, { 0x69, "Intel Corporation.", "Intel" }, { 0xC0, "Ampere Computing", "Ampere" }, // Unofficial but existing in the wild { 0x61, "Apple Inc.", "Apple" }, }; static cpu_entry_t s_cpu_list[] = { // ARM { 0x41, 0xd01, "armv8-a+crc+simd", "", "Cortex-A32" }, { 0x41, 0xd04, "armv8-a+crc+simd", "", "Cortex-A35" }, { 0x41, 0xd03, "armv8-a+crc+simd", "", "Cortex-A53" }, { 0x41, 0xd07, "armv8-a+crc+simd", "", "Cortex-A57" }, { 0x41, 0xd08, "armv8-a+crc+simd", "", "Cortex-A72" }, { 0x41, 0xd09, "armv8-a+crc+simd", "", "Cortex-A73" }, { 0x41, 0xd05, "armv8.2-a+fp16+dotprod", "", "Cortex-A55" }, { 0x41, 0xd0a, "armv8.2-a+fp16+dotprod", "", "Cortex-A75" }, { 0x41, 0xd0b, "armv8.2-a+fp16+dotprod", "", "Cortex-A76" }, { 0x41, 0xd0e, "armv8.2-a+fp16+dotprod", "", "Cortex-A76ae" }, { 0x41, 0xd0d, "armv8.2-a+fp16+dotprod", "", "Cortex-A77" }, { 0x41, 0xd41, "armv8.2-a+fp16+dotprod", "", "Cortex-A78" }, { 0x41, 0xd42, "armv8.2-a+fp16+dotprod", "", "Cortex-A78ae" }, { 0x41, 0xd4b, "armv8.2-a+fp16+dotprod", "", "Cortex-A78c" }, { 0x41, 0xd47, "armv9-a+fp16+bf16+i8mm", "", "Cortex-A710" }, { 0x41, 0xd44, "armv8.2-a+fp16+dotprod", "", "Cortex-X1" }, { 0x41, 0xd4c, "armv8.2-a+fp16+dotprod", "", "Cortex-X1c" }, { 0x41, 0xd0c, "armv8.2-a+fp16+dotprod", "", "Neoverse-N1" }, { 0x41, 0xd40, "armv8.4-a+fp16+bf16+i8mm", "", "Neoverse-V1" }, { 0x41, 0xd49, "armv8.5-a+fp16+bf16+i8mm", "", "Neoverse-N2" }, { 0x41, 0xd23, "armv8.1-m.main+pacbti+mve.fp+fp.dp", "", "Cortex-M85" }, { 0x41, 0xd13, "armv8-r+crc+simd", "", "Cortex-R52" }, { 0x41, 0xd16, "armv8-r+crc+simd", "", "Cortex-R52+" }, // APPLE { 0x61, 0x22, "armv8.5-a", "M1", "Firestorm" }, { 0x61, 0x23, "armv8.5-a", "M1", "IceStorm" }, { 0x61, 0x28, "armv8.5-a", "M1 Max", "Firestorm" }, { 0x61, 0x29, "armv8.5-a", "M1 Max", "Icestorm" }, { 0x61, 0x24, "armv8.5-a", "M1 Pro", "Firestorm" }, { 0x61, 0x25, "armv8.5-a", "M1 Pro", "Icestorm" }, { 0x61, 0x32, "armv8.5-a", "M2", "Avalanche" }, { 0x61, 0x33, "armv8.5-a", "M2", "Blizzard" }, // QUALCOMM { 0x51, 0x01, "armv8.5-a", "Snapdragon", "X-Elite" }, }; static const cpu_vendor_t* find_cpu_vendor(u64 id) { for (const auto& vendor : s_vendors_list) { if (id == vendor.id) { return &vendor; } } return nullptr; } static const cpu_entry_t* find_cpu_part(u64 vendor, u64 part) { for (const auto& cpu : s_cpu_list) { if (cpu.vendor == vendor && cpu.part == part) { return &cpu; } } return nullptr; } // Read main ID register static u64 read_MIDR_EL1([[maybe_unused]] u32 cpu_id) { #if defined(__linux__) const std::string path = fmt::format("/sys/devices/system/cpu/cpu%u/regs/identification/midr_el1", cpu_id); if (!fs::is_file(path)) { return umax; } std::string value; if (!fs::file(path, fs::read).read(value, 18)) { return 0; } return std::stoull(value, nullptr, 16); #else // Unimplemented return 0; #endif } std::string get_cpu_brand() { // Fetch vendor and part numbers. ARM CPUs often have more than 1 architecture on the SoC, so we check all of them. std::map core_layout; for (u32 i = 0; i < std::thread::hardware_concurrency(); ++i) { const auto midr = read_MIDR_EL1(i); if (midr == umax) { break; } core_layout[midr]++; } if (core_layout.empty()) { return "Unidentified CPU"; } std::string vendor_name; std::string part_family; std::vector core_names; for (const auto& [midr, count] : core_layout) { const auto implementer_id = (midr >> 24) & 0xff; const auto part_id = (midr >> 4) & 0xfff; if (vendor_name.empty()) { const auto vendor_info = find_cpu_vendor(implementer_id); vendor_name = vendor_info ? vendor_info->short_name : "Unknown"; } const auto part_info = find_cpu_part(implementer_id, part_id); if (!part_info) { core_names.push_back(fmt::format("%dx\"Unidentified cores\"", count)); continue; } if (part_family.empty() && part_info->family) { part_family = part_info->family; } core_names.push_back(fmt::format("%dx\"%s\"", count, part_info->name)); } // Assemble everything std::string result = vendor_name + " "; std::string suffix; if (!part_family.empty()) { // Since we have a known family name, the core layout is just extra info. // Wrap core layout in brackets. result += part_family + " ("; suffix = ")"; } result += fmt::merge(core_names, " + "); result += suffix; return result; } #else static std::string sysctl_s(const std::string_view& variable_name) { // Determine required buffer size size_t length = 0; if (sysctlbyname(variable_name.data(), nullptr, &length, nullptr, 0) == -1) { return ""; } // Allocate space for the variable. std::vector text(length + 1); text[length] = 0; if (sysctlbyname(variable_name.data(), text.data(), &length, nullptr, 0) == -1) { return ""; } return text.data(); } static u64 sysctl_u64(const std::string_view& variable_name) { u64 value = 0; size_t data_len = sizeof(value); if (sysctlbyname(variable_name.data(), &value, &data_len, nullptr, 0) == -1) { return umax; } return value; } // We can get the brand name from sysctl directly // Once we have windows implemented, we should probably separate the different OS-dependent bits to avoid clutter std::string get_cpu_brand() { const auto brand = sysctl_s("machdep.cpu.brand_string"); if (brand.empty()) { return "Unidentified CPU"; } // Parse extra core information (P and E cores) if (sysctl_u64("hw.nperflevels") < 2) { return brand; } u64 pcores = sysctl_u64("hw.perflevel0.physicalcpu"); u64 ecores = sysctl_u64("hw.perflevel1.physicalcpu"); if (sysctl_s("hw.perflevel0.name") == "Efficiency") { std::swap(ecores, pcores); } return fmt::format("%s (%lluP+%lluE)", brand, pcores, ecores); } #endif }