#pragma once #include "Utilities/Thread.h" #include "Emu/Memory/vm.h" #include "Emu/Audio/AudioBackend.h" #include "Emu/Audio/AudioDumper.h" // Error codes enum CellAudioError : u32 { CELL_AUDIO_ERROR_ALREADY_INIT = 0x80310701, CELL_AUDIO_ERROR_AUDIOSYSTEM = 0x80310702, CELL_AUDIO_ERROR_NOT_INIT = 0x80310703, CELL_AUDIO_ERROR_PARAM = 0x80310704, CELL_AUDIO_ERROR_PORT_FULL = 0x80310705, CELL_AUDIO_ERROR_PORT_ALREADY_RUN = 0x80310706, CELL_AUDIO_ERROR_PORT_NOT_OPEN = 0x80310707, CELL_AUDIO_ERROR_PORT_NOT_RUN = 0x80310708, CELL_AUDIO_ERROR_TRANS_EVENT = 0x80310709, CELL_AUDIO_ERROR_PORT_OPEN = 0x8031070a, CELL_AUDIO_ERROR_SHAREDMEMORY = 0x8031070b, CELL_AUDIO_ERROR_MUTEX = 0x8031070c, CELL_AUDIO_ERROR_EVENT_QUEUE = 0x8031070d, CELL_AUDIO_ERROR_AUDIOSYSTEM_NOT_FOUND = 0x8031070e, CELL_AUDIO_ERROR_TAG_NOT_FOUND = 0x8031070f, }; // constants enum { CELL_AUDIO_BLOCK_16 = 16, CELL_AUDIO_BLOCK_8 = 8, CELL_AUDIO_BLOCK_SAMPLES = 256, CELL_AUDIO_CREATEEVENTFLAG_SPU = 0x00000001, CELL_AUDIO_EVENT_HEADPHONE = 1, CELL_AUDIO_EVENT_MIX = 0, CELL_AUDIO_EVENTFLAG_BEFOREMIX = 0x80000000, CELL_AUDIO_EVENTFLAG_DECIMATE_2 = 0x08000000, CELL_AUDIO_EVENTFLAG_DECIMATE_4 = 0x10000000, CELL_AUDIO_EVENTFLAG_HEADPHONE = 0x20000000, CELL_AUDIO_EVENTFLAG_NOMIX = 0x40000000, CELL_AUDIO_MAX_PORT = 4, CELL_AUDIO_MAX_PORT_2 = 8, CELL_AUDIO_MISC_ACCVOL_ALLDEVICE = 0x0000ffffUL, CELL_AUDIO_PERSONAL_DEVICE_PRIMARY = 0x8000, CELL_AUDIO_PORT_2CH = 2, CELL_AUDIO_PORT_8CH = 8, CELL_AUDIO_PORTATTR_BGM = 0x0000000000000010ULL, CELL_AUDIO_PORTATTR_INITLEVEL = 0x0000000000001000ULL, CELL_AUDIO_PORTATTR_OUT_NO_ROUTE = 0x0000000000100000ULL, CELL_AUDIO_PORTATTR_OUT_PERSONAL_0 = 0x0000000001000000ULL, CELL_AUDIO_PORTATTR_OUT_PERSONAL_1 = 0x0000000002000000ULL, CELL_AUDIO_PORTATTR_OUT_PERSONAL_2 = 0x0000000004000000ULL, CELL_AUDIO_PORTATTR_OUT_PERSONAL_3 = 0x0000000008000000ULL, CELL_AUDIO_PORTATTR_OUT_SECONDARY = 0x0000000000000001ULL, CELL_AUDIO_STATUS_CLOSE = 0x1010, CELL_AUDIO_STATUS_READY = 1, CELL_AUDIO_STATUS_RUN = 2, }; //libaudio datatypes struct CellAudioPortParam { be_t nChannel; be_t nBlock; be_t attr; be_t level; }; struct CellAudioPortConfig { vm::bptr readIndexAddr; be_t status; be_t nChannel; be_t nBlock; be_t portSize; be_t portAddr; }; enum : u32 { AUDIO_PORT_COUNT = 8, AUDIO_MAX_BLOCK_COUNT = 32, AUDIO_MAX_CHANNELS_COUNT = 8, AUDIO_PORT_OFFSET = AUDIO_BUFFER_SAMPLES * AUDIO_MAX_BLOCK_COUNT * AUDIO_MAX_CHANNELS_COUNT * sizeof(f32), EXTRA_AUDIO_BUFFERS = 8, MAX_AUDIO_EVENT_QUEUES = 64, AUDIO_BLOCK_SIZE_2CH = 2 * AUDIO_BUFFER_SAMPLES, AUDIO_BLOCK_SIZE_8CH = 8 * AUDIO_BUFFER_SAMPLES, PORT_BUFFER_TAG_COUNT = 6, PORT_BUFFER_TAG_LAST_2CH = AUDIO_BLOCK_SIZE_2CH - 1, PORT_BUFFER_TAG_DELTA_2CH = PORT_BUFFER_TAG_LAST_2CH / (PORT_BUFFER_TAG_COUNT - 1), PORT_BUFFER_TAG_FIRST_2CH = PORT_BUFFER_TAG_LAST_2CH % (PORT_BUFFER_TAG_COUNT - 1), PORT_BUFFER_TAG_LAST_8CH = AUDIO_BLOCK_SIZE_8CH - 1, PORT_BUFFER_TAG_DELTA_8CH = PORT_BUFFER_TAG_LAST_8CH / (PORT_BUFFER_TAG_COUNT - 1), PORT_BUFFER_TAG_FIRST_8CH = PORT_BUFFER_TAG_LAST_8CH % (PORT_BUFFER_TAG_COUNT - 1), }; enum class audio_port_state : u32 { closed, opened, started, }; struct audio_port { atomic_t state = audio_port_state::closed; u32 number; vm::ptr addr{}; vm::ptr index{}; u32 num_channels; u32 num_blocks; u64 attr; u64 cur_pos; u64 global_counter; // copy of global counter u64 active_counter; u32 size; u64 timestamp; // copy of global timestamp struct alignas(8) level_set_t { float value; float inc; }; float level; atomic_t level_set; u32 block_size() const { return num_channels * AUDIO_BUFFER_SAMPLES; } u32 buf_size() const { return block_size() * sizeof(float); } u32 position(s32 offset = 0) const { s32 ofs = (offset % num_blocks) + num_blocks; return (cur_pos + ofs) % num_blocks; } u32 buf_addr(s32 offset = 0) const { return addr.addr() + position(offset) * buf_size(); } to_be_t* get_vm_ptr(s32 offset = 0) const { return vm::_ptr(buf_addr(offset)); } // Tags u32 prev_touched_tag_nr; f32 last_tag_value[PORT_BUFFER_TAG_COUNT] = { 0 }; void tag(s32 offset = 0); }; struct cell_audio_config { const std::shared_ptr backend = Emu.GetCallbacks().get_audio(); const u32 audio_channels = AudioBackend::get_channels(); const u32 audio_sampling_rate = AudioBackend::get_sampling_rate(); const u32 audio_block_period = AUDIO_BUFFER_SAMPLES * 1000000 / audio_sampling_rate; const u32 audio_buffer_length = AUDIO_BUFFER_SAMPLES * audio_channels; const u32 audio_buffer_size = audio_buffer_length * AudioBackend::get_sample_size(); /* * Buffering */ const u64 desired_buffer_duration = g_cfg.audio.desired_buffer_duration * 1000llu; private: const bool raw_buffering_enabled = static_cast(g_cfg.audio.enable_buffering); public: // We need a non-blocking backend (implementing play/pause/flush) to be able to do buffering correctly // We also need to be able to query the current playing state const bool buffering_enabled = raw_buffering_enabled && backend->has_capability(AudioBackend::PLAY_PAUSE_FLUSH | AudioBackend::IS_PLAYING); const u64 minimum_block_period = audio_block_period / 2; // the block period will not be dynamically lowered below this value (usecs) const u64 maximum_block_period = (6 * audio_block_period) / 5; // the block period will not be dynamically increased above this value (usecs) const u32 desired_full_buffers = buffering_enabled ? static_cast(desired_buffer_duration / audio_block_period) + 1 : 2; const u32 num_allocated_buffers = desired_full_buffers + EXTRA_AUDIO_BUFFERS; // number of ringbuffer buffers const f32 period_average_alpha = 0.02f; // alpha factor for the m_average_period rolling average const s64 period_comparison_margin = 250; // when comparing the current period time with the desired period, if it is below this number of usecs we do not wait any longer const u64 fully_untouched_timeout = 2 * audio_block_period; // timeout if the game has not touched any audio buffer yet const u64 partially_untouched_timeout = 4 * audio_block_period; // timeout if the game has not touched all audio buffers yet /* * Time Stretching */ private: const bool raw_time_stretching_enabled = buffering_enabled && g_cfg.audio.enable_time_stretching && (g_cfg.audio.time_stretching_threshold > 0); public: // We need to be able to set a dynamic frequency ratio to be able to do time stretching const bool time_stretching_enabled = raw_time_stretching_enabled && backend->has_capability(AudioBackend::SET_FREQUENCY_RATIO); const f32 time_stretching_threshold = g_cfg.audio.time_stretching_threshold / 100.0f; // we only apply time stretching below this buffer fill rate (adjusted for average period) const f32 time_stretching_step = 0.1f; // will only reduce/increase the frequency ratio in steps of at least this value const f32 time_stretching_scale = 0.9f; /* * Constructor */ cell_audio_config(); }; class audio_ringbuffer { private: const std::shared_ptr backend; const cell_audio_config& cfg; const u32 buf_sz; std::unique_ptr m_dump; std::unique_ptr buffer[MAX_AUDIO_BUFFERS]; const float silence_buffer[AUDIO_MAX_CHANNELS_COUNT * AUDIO_BUFFER_SAMPLES] = { 0 }; bool backend_open = false; bool playing = false; bool emu_paused = false; u64 update_timestamp = 0; u64 play_timestamp = 0; u64 last_remainder = 0; u64 enqueued_samples = 0; f32 frequency_ratio = 1.0f; u32 cur_pos = 0; bool get_backend_playing() const { return has_capability(AudioBackend::PLAY_PAUSE_FLUSH | AudioBackend::IS_PLAYING) ? backend->IsPlaying() : playing; } public: audio_ringbuffer(cell_audio_config &cfg); ~audio_ringbuffer(); void play(); void enqueue(const float* in_buffer = nullptr); void flush(); u64 update(); void enqueue_silence(u32 buf_count = 1); f32 set_frequency_ratio(f32 new_ratio); float* get_buffer(u32 num) const { AUDIT(num < cfg.num_allocated_buffers); AUDIT(buffer[num].get() != nullptr); return buffer[num].get(); } u64 get_timestamp() const { return get_system_time() - Emu.GetPauseTime(); } float* get_current_buffer() const { return get_buffer(cur_pos); } u64 get_enqueued_samples() const { AUDIT(cfg.buffering_enabled); return enqueued_samples; } u64 get_enqueued_playtime(bool raw = false) const { AUDIT(cfg.buffering_enabled); u64 sampling_rate = raw ? cfg.audio_sampling_rate : static_cast(cfg.audio_sampling_rate * frequency_ratio); return enqueued_samples * 1'000'000 / sampling_rate; } bool is_playing() const { return playing; } f32 get_frequency_ratio() const { return frequency_ratio; } u32 has_capability(u32 cap) const { return backend->has_capability(cap); } const char* get_backend_name() const { return backend->GetName(); } }; class cell_audio_thread { vm::ptr m_buffer; vm::ptr m_indexes; std::unique_ptr ringbuffer; void reset_ports(s32 offset = 0); void advance(u64 timestamp, bool reset = true); std::tuple count_port_buffer_tags(); template void mix(float *out_buffer, s32 offset = 0); void finish_port_volume_stepping(); constexpr static u64 get_thread_wait_delay(u64 time_left) { return (time_left > 350) ? time_left - 250 : 100; } public: cell_audio_config cfg; std::vector keys; std::array ports; u64 m_last_period_end = 0; u64 m_counter = 0; u64 m_start_time = 0; u64 m_dynamic_period = 0; f32 m_average_playtime; void operator()(); cell_audio_thread(vm::ptr buf, vm::ptr ind) : m_buffer(buf) , m_indexes(ind) { for (u32 i = 0; i < AUDIO_PORT_COUNT; i++) { ports[i].number = i; ports[i].addr = m_buffer + AUDIO_PORT_OFFSET * i; ports[i].index = m_indexes + i; } } audio_port* open_port() { for (u32 i = 0; i < AUDIO_PORT_COUNT; i++) { if (ports[i].state.compare_and_swap_test(audio_port_state::closed, audio_port_state::opened)) { return &ports[i]; } } return nullptr; } bool has_capability(u32 cap) const { return ringbuffer->has_capability(cap); } }; using cell_audio = named_thread;