#include "stdafx.h" #include "sys_lwcond.h" #include "Emu/IdManager.h" #include "Emu/Cell/ErrorCodes.h" #include "Emu/Cell/PPUThread.h" #include "sys_lwmutex.h" #include "util/asm.hpp" LOG_CHANNEL(sys_lwcond); lv2_lwcond::lv2_lwcond(utils::serial& ar) : name(ar.operator be_t()) , lwid(ar) , protocol(ar) , control(ar.operator decltype(control)()) { } void lv2_lwcond::save(utils::serial& ar) { USING_SERIALIZATION_VERSION(lv2_sync); ar(name, lwid, protocol, control); } error_code _sys_lwcond_create(ppu_thread& ppu, vm::ptr lwcond_id, u32 lwmutex_id, vm::ptr control, u64 name) { ppu.state += cpu_flag::wait; sys_lwcond.warning(u8"_sys_lwcond_create(lwcond_id=*0x%x, lwmutex_id=0x%x, control=*0x%x, name=0x%llx (ā€œ%sā€))", lwcond_id, lwmutex_id, control, name, lv2_obj::name_64{std::bit_cast>(name)}); u32 protocol; // Extract protocol from lwmutex if (!idm::check(lwmutex_id, [&protocol](lv2_lwmutex& mutex) { protocol = mutex.protocol; })) { return CELL_ESRCH; } if (protocol == SYS_SYNC_RETRY) { // Lwcond can't have SYS_SYNC_RETRY protocol protocol = SYS_SYNC_PRIORITY; } if (const u32 id = idm::make(name, lwmutex_id, protocol, control)) { ppu.check_state(); *lwcond_id = id; return CELL_OK; } return CELL_EAGAIN; } error_code _sys_lwcond_destroy(ppu_thread& ppu, u32 lwcond_id) { ppu.state += cpu_flag::wait; sys_lwcond.warning("_sys_lwcond_destroy(lwcond_id=0x%x)", lwcond_id); std::shared_ptr _cond; while (true) { s32 old_val = 0; auto [ptr, ret] = idm::withdraw(lwcond_id, [&](lv2_lwcond& cond) -> CellError { // Ignore check on first iteration if (_cond && std::addressof(cond) != _cond.get()) { // Other thread has destroyed the lwcond earlier return CELL_ESRCH; } std::lock_guard lock(cond.mutex); if (atomic_storage::load(cond.sq)) { return CELL_EBUSY; } old_val = cond.lwmutex_waiters.or_fetch(smin); if (old_val != smin) { // De-schedule if waiters were found lv2_obj::sleep(ppu); // Repeat loop: there are lwmutex waiters inside _sys_lwcond_queue_wait return CELL_EAGAIN; } return {}; }); if (!ptr) { return CELL_ESRCH; } if (ret) { if (ret != CELL_EAGAIN) { return ret; } } else { break; } _cond = std::move(ptr); // Wait for all lwcond waiters to quit while (old_val + 0u > 1u << 31) { thread_ctrl::wait_on(_cond->lwmutex_waiters, old_val); if (ppu.is_stopped()) { ppu.state += cpu_flag::again; return {}; } old_val = _cond->lwmutex_waiters; } // Wake up from sleep ppu.check_state(); } return CELL_OK; } error_code _sys_lwcond_signal(ppu_thread& ppu, u32 lwcond_id, u32 lwmutex_id, u64 ppu_thread_id, u32 mode) { ppu.state += cpu_flag::wait; sys_lwcond.trace("_sys_lwcond_signal(lwcond_id=0x%x, lwmutex_id=0x%x, ppu_thread_id=0x%llx, mode=%d)", lwcond_id, lwmutex_id, ppu_thread_id, mode); // Mode 1: lwmutex was initially owned by the calling thread // Mode 2: lwmutex was not owned by the calling thread and waiter hasn't been increased // Mode 3: lwmutex was forcefully owned by the calling thread if (mode < 1 || mode > 3) { fmt::throw_exception("Unknown mode (%d)", mode); } while (true) { if (ppu.test_stopped()) { ppu.state += cpu_flag::again; return {}; } bool finished = true; ppu.state += cpu_flag::wait; const auto cond = idm::check(lwcond_id, [&, notify = lv2_obj::notify_all_t()](lv2_lwcond& cond) -> int { ppu_thread* cpu = nullptr; if (ppu_thread_id != u32{umax}) { cpu = idm::check_unlocked>(static_cast(ppu_thread_id)); if (!cpu) { return -1; } } lv2_lwmutex* mutex = nullptr; if (mode != 2) { mutex = idm::check_unlocked(lwmutex_id); if (!mutex) { return -1; } } if (atomic_storage::load(cond.sq)) { std::lock_guard lock(cond.mutex); if (ppu.state & cpu_flag::suspend) { // Test if another signal caused the current thread to be suspended, in which case it needs to wait until the thread wakes up (otherwise the signal may cause unexpected results) finished = false; return 0; } if (cpu) { if (static_cast(cpu)->state & cpu_flag::again) { ppu.state += cpu_flag::again; return 0; } } auto result = cpu ? cond.unqueue(cond.sq, cpu) : cond.schedule(cond.sq, cond.protocol); if (result) { if (static_cast(result)->state & cpu_flag::again) { ppu.state += cpu_flag::again; return 0; } if (mode == 2) { static_cast(result)->gpr[3] = CELL_EBUSY; } else if (mode == 3 && mutex->load_sq()) [[unlikely]] { std::lock_guard lock(mutex->mutex); // Respect ordering of the sleep queue mutex->try_own(result, true); auto result2 = mutex->reown(); if (result2->state & cpu_flag::again) { ppu.state += cpu_flag::again; return 0; } if (result2 != result) { cond.awake(result2); result = nullptr; } } else if (mode == 1) { mutex->try_own(result, true); result = nullptr; } if (result) { cond.awake(result); } return 1; } } else { cond.mutex.lock_unlock(); if (ppu.state & cpu_flag::suspend) { finished = false; return 0; } } return 0; }); if (!finished) { continue; } if (!cond || cond.ret == -1) { return CELL_ESRCH; } if (!cond.ret) { if (ppu_thread_id == u32{umax}) { if (mode == 3) { return not_an_error(CELL_ENOENT); } else if (mode == 2) { return CELL_OK; } } return not_an_error(CELL_EPERM); } return CELL_OK; } } error_code _sys_lwcond_signal_all(ppu_thread& ppu, u32 lwcond_id, u32 lwmutex_id, u32 mode) { ppu.state += cpu_flag::wait; sys_lwcond.trace("_sys_lwcond_signal_all(lwcond_id=0x%x, lwmutex_id=0x%x, mode=%d)", lwcond_id, lwmutex_id, mode); // Mode 1: lwmutex was initially owned by the calling thread // Mode 2: lwmutex was not owned by the calling thread and waiter hasn't been increased if (mode < 1 || mode > 2) { fmt::throw_exception("Unknown mode (%d)", mode); } while (true) { if (ppu.test_stopped()) { ppu.state += cpu_flag::again; return {}; } bool finished = true; ppu.state += cpu_flag::wait; const auto cond = idm::check(lwcond_id, [&, notify = lv2_obj::notify_all_t()](lv2_lwcond& cond) -> int { lv2_lwmutex* mutex{}; if (mode != 2) { mutex = idm::check_unlocked(lwmutex_id); if (!mutex) { return -1; } } if (atomic_storage::load(cond.sq)) { std::lock_guard lock(cond.mutex); if (ppu.state & cpu_flag::suspend) { // Test if another signal caused the current thread to be suspended, in which case it needs to wait until the thread wakes up (otherwise the signal may cause unexpected results) finished = false; return 0; } u32 result = 0; for (auto cpu = +cond.sq; cpu; cpu = cpu->next_cpu) { if (cpu->state & cpu_flag::again) { ppu.state += cpu_flag::again; return 0; } } auto sq = cond.sq; atomic_storage::release(cond.sq, nullptr); while (const auto cpu = cond.schedule(sq, cond.protocol)) { if (mode == 2) { static_cast(cpu)->gpr[3] = CELL_EBUSY; } if (mode == 1) { mutex->try_own(cpu, true); } else { lv2_obj::append(cpu); } result++; } if (result && mode == 2) { lv2_obj::awake_all(); } return result; } else { cond.mutex.lock_unlock(); if (ppu.state & cpu_flag::suspend) { finished = false; return 0; } } return 0; }); if (!finished) { continue; } if (!cond || cond.ret == -1) { return CELL_ESRCH; } if (mode == 1) { // Mode 1: return the amount of threads (TODO) return not_an_error(cond.ret); } return CELL_OK; } } error_code _sys_lwcond_queue_wait(ppu_thread& ppu, u32 lwcond_id, u32 lwmutex_id, u64 timeout) { ppu.state += cpu_flag::wait; sys_lwcond.trace("_sys_lwcond_queue_wait(lwcond_id=0x%x, lwmutex_id=0x%x, timeout=0x%llx)", lwcond_id, lwmutex_id, timeout); ppu.gpr[3] = CELL_OK; std::shared_ptr mutex; auto& sstate = *ppu.optional_savestate_state; const auto cond = idm::get(lwcond_id, [&, notify = lv2_obj::notify_all_t()](lv2_lwcond& cond) { mutex = idm::get_unlocked(lwmutex_id); if (!mutex) { return; } // Increment lwmutex's lwcond's waiters count mutex->lwcond_waiters++; lv2_obj::prepare_for_sleep(ppu); std::lock_guard lock(cond.mutex); cond.lwmutex_waiters++; const bool mutex_sleep = sstate.try_read().second; sstate.clear(); if (mutex_sleep) { // Special: loading state from the point of waiting on lwmutex sleep queue mutex->try_own(&ppu, true); } else { // Add a waiter lv2_obj::emplace(cond.sq, &ppu); } if (!ppu.loaded_from_savestate && !mutex->try_unlock(false)) { std::lock_guard lock2(mutex->mutex); // Process lwmutex sleep queue if (const auto cpu = mutex->reown()) { if (static_cast(cpu)->state & cpu_flag::again) { ensure(cond.unqueue(cond.sq, &ppu)); ppu.state += cpu_flag::again; return; } // Put the current thread to sleep and schedule lwmutex waiter atomically cond.append(cpu); cond.sleep(ppu, timeout); return; } } cond.sleep(ppu, timeout); }); if (!cond || !mutex) { return CELL_ESRCH; } if (ppu.state & cpu_flag::again) { return CELL_OK; } while (auto state = +ppu.state) { if (state & cpu_flag::signal && ppu.state.test_and_reset(cpu_flag::signal)) { break; } if (is_stopped(state)) { std::scoped_lock lock(cond->mutex, mutex->mutex); bool mutex_sleep = false; bool cond_sleep = false; for (auto cpu = mutex->load_sq(); cpu; cpu = cpu->next_cpu) { if (cpu == &ppu) { mutex_sleep = true; break; } } for (auto cpu = atomic_storage::load(cond->sq); cpu; cpu = cpu->next_cpu) { if (cpu == &ppu) { cond_sleep = true; break; } } if (!cond_sleep && !mutex_sleep) { break; } sstate(mutex_sleep); ppu.state += cpu_flag::again; break; } for (usz i = 0; cpu_flag::signal - ppu.state && i < 50; i++) { busy_wait(500); } if (ppu.state & cpu_flag::signal) { continue; } if (timeout) { if (lv2_obj::wait_timeout(timeout, &ppu)) { // Wait for rescheduling if (ppu.check_state()) { continue; } std::lock_guard lock(cond->mutex); if (cond->unqueue(cond->sq, &ppu)) { ppu.gpr[3] = CELL_ETIMEDOUT; break; } std::lock_guard lock2(mutex->mutex); bool success = false; mutex->lv2_control.fetch_op([&](lv2_lwmutex::control_data_t& data) { success = false; ppu_thread* sq = static_cast(data.sq); const bool retval = &ppu == sq; if (!mutex->unqueue(sq, &ppu)) { return false; } success = true; if (!retval) { return false; } data.sq = sq; return true; }); if (success) { ppu.next_cpu = nullptr; ppu.gpr[3] = CELL_ETIMEDOUT; } break; } } else { ppu.state.wait(state); } } if (--mutex->lwcond_waiters == smin) { // Notify the thread destroying lwmutex on last waiter mutex->lwcond_waiters.notify_all(); } if (--cond->lwmutex_waiters == smin) { // Notify the thread destroying lwcond on last waiter cond->lwmutex_waiters.notify_all(); } // Return cause return not_an_error(ppu.gpr[3]); }