#include "stdafx.h" #include "sys_event.h" #include "Emu/IdManager.h" #include "Emu/IPC.h" #include "Emu/Cell/ErrorCodes.h" #include "Emu/Cell/PPUThread.h" #include "Emu/Cell/SPUThread.h" #include "sys_process.h" LOG_CHANNEL(sys_event); lv2_event_queue::lv2_event_queue(u32 protocol, s32 type, s32 size, u64 name, u64 ipc_key) noexcept : id(idm::last_id()) , protocol{static_cast(protocol)} , type(static_cast(type)) , size(static_cast(size)) , name(name) , key(ipc_key) { } std::shared_ptr lv2_event_queue::find(u64 ipc_key) { if (ipc_key == SYS_EVENT_QUEUE_LOCAL) { // Invalid IPC key return {}; } return g_fxo->get>().get(ipc_key); } extern void resume_spu_thread_group_from_waiting(spu_thread& spu); CellError lv2_event_queue::send(lv2_event event) { std::lock_guard lock(mutex); if (!exists) { return CELL_ENOTCONN; } if (sq.empty()) { if (events.size() < this->size + 0u) { // Save event events.emplace_back(event); return {}; } return CELL_EBUSY; } if (type == SYS_PPU_QUEUE) { // Store event in registers auto& ppu = static_cast(*schedule(sq, protocol)); std::tie(ppu.gpr[4], ppu.gpr[5], ppu.gpr[6], ppu.gpr[7]) = event; awake(&ppu); } else { // Store event in In_MBox auto& spu = static_cast(*schedule(sq, protocol)); const u32 data1 = static_cast(std::get<1>(event)); const u32 data2 = static_cast(std::get<2>(event)); const u32 data3 = static_cast(std::get<3>(event)); spu.ch_in_mbox.set_values(4, CELL_OK, data1, data2, data3); resume_spu_thread_group_from_waiting(spu); } return {}; } error_code sys_event_queue_create(cpu_thread& cpu, vm::ptr equeue_id, vm::ptr attr, u64 ipc_key, s32 size) { cpu.state += cpu_flag::wait; sys_event.warning("sys_event_queue_create(equeue_id=*0x%x, attr=*0x%x, ipc_key=0x%llx, size=%d)", equeue_id, attr, ipc_key, size); if (size <= 0 || size > 127) { return CELL_EINVAL; } const u32 protocol = attr->protocol; if (protocol != SYS_SYNC_FIFO && protocol != SYS_SYNC_PRIORITY) { sys_event.error("sys_event_queue_create(): unknown protocol (0x%x)", protocol); return CELL_EINVAL; } const u32 type = attr->type; if (type != SYS_PPU_QUEUE && type != SYS_SPU_QUEUE) { sys_event.error("sys_event_queue_create(): unknown type (0x%x)", type); return CELL_EINVAL; } const u32 pshared = ipc_key == SYS_EVENT_QUEUE_LOCAL ? SYS_SYNC_NOT_PROCESS_SHARED : SYS_SYNC_PROCESS_SHARED; constexpr u32 flags = SYS_SYNC_NEWLY_CREATED; const u64 name = attr->name_u64; if (const auto error = lv2_obj::create(pshared, ipc_key, flags, [&]() { return std::make_shared(protocol, type, size, name, ipc_key); })) { return error; } *equeue_id = idm::last_id(); return CELL_OK; } error_code sys_event_queue_destroy(ppu_thread& ppu, u32 equeue_id, s32 mode) { ppu.state += cpu_flag::wait; sys_event.warning("sys_event_queue_destroy(equeue_id=0x%x, mode=%d)", equeue_id, mode); if (mode && mode != SYS_EVENT_QUEUE_DESTROY_FORCE) { return CELL_EINVAL; } std::vector events; const auto queue = idm::withdraw(equeue_id, [&](lv2_event_queue& queue) -> CellError { std::lock_guard lock(queue.mutex); if (!mode && !queue.sq.empty()) { return CELL_EBUSY; } if (queue.sq.empty()) { // Optimization mode = 0; } if (!queue.events.empty()) { // Copy events for logging, does not empty events.insert(events.begin(), queue.events.begin(), queue.events.end()); } lv2_obj::on_id_destroy(queue, queue.key); return {}; }); if (!queue) { return CELL_ESRCH; } if (queue.ret) { return queue.ret; } std::string lost_data; if (mode == SYS_EVENT_QUEUE_DESTROY_FORCE) { std::deque sq; std::lock_guard lock(queue->mutex); sq = std::move(queue->sq); if (sys_event.warning) { fmt::append(lost_data, "Forcefully awaken waiters (%u):\n", sq.size()); for (auto cpu : sq) { lost_data += cpu->get_name(); lost_data += '\n'; } } if (queue->type == SYS_PPU_QUEUE) { for (auto cpu : sq) { static_cast(*cpu).gpr[3] = CELL_ECANCELED; queue->append(cpu); } lv2_obj::awake_all(); } else { for (auto cpu : sq) { static_cast(*cpu).ch_in_mbox.set_values(1, CELL_ECANCELED); resume_spu_thread_group_from_waiting(static_cast(*cpu)); } } } if (sys_event.warning) { if (!events.empty()) { fmt::append(lost_data, "Unread queue events (%u):\n", events.size()); } for (const lv2_event& evt : events) { fmt::append(lost_data, "data0=0x%x, data1=0x%x, data2=0x%x, data3=0x%x\n" , std::get<0>(evt), std::get<1>(evt), std::get<2>(evt), std::get<3>(evt)); } if (!lost_data.empty()) { sys_event.warning("sys_event_queue_destroy(): %s", lost_data); } } return CELL_OK; } error_code sys_event_queue_tryreceive(ppu_thread& ppu, u32 equeue_id, vm::ptr event_array, s32 size, vm::ptr number) { ppu.state += cpu_flag::wait; sys_event.trace("sys_event_queue_tryreceive(equeue_id=0x%x, event_array=*0x%x, size=%d, number=*0x%x)", equeue_id, event_array, size, number); const auto queue = idm::get(equeue_id); if (!queue) { return CELL_ESRCH; } if (queue->type != SYS_PPU_QUEUE) { return CELL_EINVAL; } std::lock_guard lock(queue->mutex); if (!queue->exists) { return CELL_ESRCH; } s32 count = 0; while (queue->sq.empty() && count < size && !queue->events.empty()) { auto& dest = event_array[count++]; const auto event = queue->events.front(); queue->events.pop_front(); std::tie(dest.source, dest.data1, dest.data2, dest.data3) = event; } *number = count; return CELL_OK; } error_code sys_event_queue_receive(ppu_thread& ppu, u32 equeue_id, vm::ptr dummy_event, u64 timeout) { ppu.state += cpu_flag::wait; sys_event.trace("sys_event_queue_receive(equeue_id=0x%x, *0x%x, timeout=0x%llx)", equeue_id, dummy_event, timeout); ppu.gpr[3] = CELL_OK; const auto queue = idm::get(equeue_id, [&](lv2_event_queue& queue) -> CellError { if (queue.type != SYS_PPU_QUEUE) { return CELL_EINVAL; } std::lock_guard lock(queue.mutex); // "/dev_flash/vsh/module/msmw2.sprx" seems to rely on some cryptic shared memory behaviour that we don't emulate correctly // This is a hack to avoid waiting for 1m40s every time we boot vsh if (queue.key == 0x8005911000000012 && g_ps3_process_info.get_cellos_appname() == "vsh.self"sv) { sys_event.todo("sys_event_queue_receive(equeue_id=0x%x, *0x%x, timeout=0x%llx) Bypassing timeout for msmw2.sprx", equeue_id, dummy_event, timeout); timeout = 1; } if (queue.events.empty()) { queue.sq.emplace_back(&ppu); queue.sleep(ppu, timeout); return CELL_EBUSY; } std::tie(ppu.gpr[4], ppu.gpr[5], ppu.gpr[6], ppu.gpr[7]) = queue.events.front(); queue.events.pop_front(); return {}; }); if (!queue) { return CELL_ESRCH; } if (queue.ret) { if (queue.ret != CELL_EBUSY) { return queue.ret; } } else { return CELL_OK; } // If cancelled, gpr[3] will be non-zero. Other registers must contain event data. while (auto state = ppu.state.fetch_sub(cpu_flag::signal)) { if (is_stopped(state) || state & cpu_flag::signal) { break; } if (timeout) { if (lv2_obj::wait_timeout(timeout, &ppu)) { // Wait for rescheduling if (ppu.check_state()) { return {}; } std::lock_guard lock(queue->mutex); if (!queue->unqueue(queue->sq, &ppu)) { break; } ppu.gpr[3] = CELL_ETIMEDOUT; break; } } else { thread_ctrl::wait_on(ppu.state, state); } } return not_an_error(ppu.gpr[3]); } error_code sys_event_queue_drain(ppu_thread& ppu, u32 equeue_id) { ppu.state += cpu_flag::wait; sys_event.trace("sys_event_queue_drain(equeue_id=0x%x)", equeue_id); const auto queue = idm::check(equeue_id, [&](lv2_event_queue& queue) { std::lock_guard lock(queue.mutex); queue.events.clear(); }); if (!queue) { return CELL_ESRCH; } return CELL_OK; } error_code sys_event_port_create(cpu_thread& cpu, vm::ptr eport_id, s32 port_type, u64 name) { cpu.state += cpu_flag::wait; sys_event.warning("sys_event_port_create(eport_id=*0x%x, port_type=%d, name=0x%llx)", eport_id, port_type, name); if (port_type != SYS_EVENT_PORT_LOCAL && port_type != 3) { sys_event.error("sys_event_port_create(): unknown port type (%d)", port_type); return CELL_EINVAL; } if (const u32 id = idm::make(port_type, name)) { *eport_id = id; return CELL_OK; } return CELL_EAGAIN; } error_code sys_event_port_destroy(ppu_thread& ppu, u32 eport_id) { ppu.state += cpu_flag::wait; sys_event.warning("sys_event_port_destroy(eport_id=0x%x)", eport_id); const auto port = idm::withdraw(eport_id, [](lv2_event_port& port) -> CellError { if (lv2_obj::check(port.queue)) { return CELL_EISCONN; } return {}; }); if (!port) { return CELL_ESRCH; } if (port.ret) { return port.ret; } return CELL_OK; } error_code sys_event_port_connect_local(cpu_thread& cpu, u32 eport_id, u32 equeue_id) { cpu.state += cpu_flag::wait; sys_event.warning("sys_event_port_connect_local(eport_id=0x%x, equeue_id=0x%x)", eport_id, equeue_id); std::lock_guard lock(id_manager::g_mutex); const auto port = idm::check_unlocked(eport_id); if (!port || !idm::check_unlocked(equeue_id)) { return CELL_ESRCH; } if (port->type != SYS_EVENT_PORT_LOCAL) { return CELL_EINVAL; } if (lv2_obj::check(port->queue)) { return CELL_EISCONN; } port->queue = idm::get_unlocked(equeue_id); return CELL_OK; } error_code sys_event_port_connect_ipc(ppu_thread& ppu, u32 eport_id, u64 ipc_key) { ppu.state += cpu_flag::wait; sys_event.warning("sys_event_port_connect_ipc(eport_id=0x%x, ipc_key=0x%x)", eport_id, ipc_key); if (ipc_key == 0) { return CELL_EINVAL; } auto queue = lv2_event_queue::find(ipc_key); std::lock_guard lock(id_manager::g_mutex); const auto port = idm::check_unlocked(eport_id); if (!port || !queue) { return CELL_ESRCH; } if (port->type != SYS_EVENT_PORT_IPC) { return CELL_EINVAL; } if (lv2_obj::check(port->queue)) { return CELL_EISCONN; } port->queue = std::move(queue); return CELL_OK; } error_code sys_event_port_disconnect(ppu_thread& ppu, u32 eport_id) { ppu.state += cpu_flag::wait; sys_event.warning("sys_event_port_disconnect(eport_id=0x%x)", eport_id); std::lock_guard lock(id_manager::g_mutex); const auto port = idm::check_unlocked(eport_id); if (!port) { return CELL_ESRCH; } if (!lv2_obj::check(port->queue)) { return CELL_ENOTCONN; } // TODO: return CELL_EBUSY if necessary (can't detect the condition) port->queue.reset(); return CELL_OK; } error_code sys_event_port_send(u32 eport_id, u64 data1, u64 data2, u64 data3) { if (auto cpu = get_current_cpu_thread()) { cpu->state += cpu_flag::wait; } sys_event.trace("sys_event_port_send(eport_id=0x%x, data1=0x%llx, data2=0x%llx, data3=0x%llx)", eport_id, data1, data2, data3); const auto port = idm::get(eport_id, [&](lv2_event_port& port) -> CellError { if (lv2_obj::check(port.queue)) { const u64 source = port.name ? port.name : (s64{process_getpid()} << 32) | u64{eport_id}; return port.queue->send(source, data1, data2, data3); } return CELL_ENOTCONN; }); if (!port) { return CELL_ESRCH; } if (port.ret) { if (port.ret == CELL_EBUSY) { return not_an_error(CELL_EBUSY); } return port.ret; } return CELL_OK; }