#include "stdafx.h" #include "Emu/Memory/Memory.h" #include "Emu/System.h" #include "Emu/SysCalls/SysCalls.h" #include "Emu/Memory/atomic_type.h" #include "Emu/CPU/CPUThreadManager.h" #include "Emu/Cell/PPUThread.h" #include "sleep_queue_type.h" #include "sys_event_flag.h" SysCallBase sys_event_flag("sys_event_flag"); u32 EventFlag::check() { u32 target = 0; u64 highest_prio = ~0ull; const u64 flag_set = flags.read_sync(); for (u32 i = 0; i < waiters.size(); i++) { if (((waiters[i].mode & SYS_EVENT_FLAG_WAIT_AND) && (flag_set & waiters[i].bitptn) == waiters[i].bitptn) || ((waiters[i].mode & SYS_EVENT_FLAG_WAIT_OR) && (flag_set & waiters[i].bitptn))) { if (protocol == SYS_SYNC_FIFO) { target = waiters[i].tid; break; } else if (protocol == SYS_SYNC_PRIORITY) { if (std::shared_ptr t = Emu.GetCPU().GetThread(waiters[i].tid)) { const u64 prio = t->GetPrio(); if (prio < highest_prio) { highest_prio = prio; target = waiters[i].tid; } } else { assert(!"EventFlag::check(): waiter not found"); } } else { assert(!"EventFlag::check(): unknown protocol"); } } } return target; } s32 sys_event_flag_create(vm::ptr eflag_id, vm::ptr attr, u64 init) { sys_event_flag.Warning("sys_event_flag_create(eflag_id_addr=0x%x, attr_addr=0x%x, init=0x%llx)", eflag_id.addr(), attr.addr(), init); if (!eflag_id) { sys_event_flag.Error("sys_event_flag_create(): invalid memory access (eflag_id_addr=0x%x)", eflag_id.addr()); return CELL_EFAULT; } if (!attr) { sys_event_flag.Error("sys_event_flag_create(): invalid memory access (attr_addr=0x%x)", attr.addr()); return CELL_EFAULT; } switch (attr->protocol.data()) { case se32(SYS_SYNC_PRIORITY): break; case se32(SYS_SYNC_RETRY): sys_event_flag.Todo("SYS_SYNC_RETRY"); break; case se32(SYS_SYNC_PRIORITY_INHERIT): sys_event_flag.Todo("SYS_SYNC_PRIORITY_INHERIT"); break; case se32(SYS_SYNC_FIFO): break; default: sys_event_flag.Error("Unknown protocol (0x%x)", attr->protocol); return CELL_EINVAL; } if (attr->pshared.data() != se32(0x200)) { sys_event_flag.Error("Unknown pshared attribute (0x%x)", attr->pshared); return CELL_EINVAL; } switch (attr->type.data()) { case se32(SYS_SYNC_WAITER_SINGLE): break; case se32(SYS_SYNC_WAITER_MULTIPLE): break; default: sys_event_flag.Error("Unknown event flag type (0x%x)", attr->type); return CELL_EINVAL; } std::shared_ptr ef(new EventFlag(init, attr->protocol, attr->type, attr->name_u64)); u32 id = sys_event_flag.GetNewId(ef, TYPE_EVENT_FLAG); *eflag_id = id; sys_event_flag.Warning("*** event_flag created [%s] (protocol=0x%x, type=0x%x): id = %d", std::string(attr->name, 8).c_str(), attr->protocol, attr->type, id); return CELL_OK; } s32 sys_event_flag_destroy(u32 eflag_id) { sys_event_flag.Warning("sys_event_flag_destroy(eflag_id=%d)", eflag_id); std::shared_ptr ef; if (!sys_event_flag.CheckId(eflag_id, ef)) return CELL_ESRCH; if (ef->waiters.size()) // ??? { return CELL_EBUSY; } Emu.GetIdManager().RemoveID(eflag_id); return CELL_OK; } s32 sys_event_flag_wait(u32 eflag_id, u64 bitptn, u32 mode, vm::ptr result, u64 timeout) { sys_event_flag.Log("sys_event_flag_wait(eflag_id=%d, bitptn=0x%llx, mode=0x%x, result_addr=0x%x, timeout=%lld)", eflag_id, bitptn, mode, result.addr(), timeout); if (result) *result = 0; switch (mode & 0xf) { case SYS_EVENT_FLAG_WAIT_AND: break; case SYS_EVENT_FLAG_WAIT_OR: break; default: return CELL_EINVAL; } switch (mode & ~0xf) { case 0: break; // ??? case SYS_EVENT_FLAG_WAIT_CLEAR: break; case SYS_EVENT_FLAG_WAIT_CLEAR_ALL: break; default: return CELL_EINVAL; } std::shared_ptr ef; if (!sys_event_flag.CheckId(eflag_id, ef)) return CELL_ESRCH; const u32 tid = GetCurrentPPUThread().GetId(); { std::lock_guard lock(ef->mutex); if (ef->type == SYS_SYNC_WAITER_SINGLE && ef->waiters.size() > 0) { return CELL_EPERM; } EventFlagWaiter rec; rec.bitptn = bitptn; rec.mode = mode; rec.tid = tid; ef->waiters.push_back(rec); if (ef->check() == tid) { const u64 flag_set = ef->flags.read_sync(); ef->waiters.erase(ef->waiters.end() - 1); if (mode & SYS_EVENT_FLAG_WAIT_CLEAR) { ef->flags &= ~bitptn; } else if (mode & SYS_EVENT_FLAG_WAIT_CLEAR_ALL) { ef->flags &= 0; } if (result) { *result = flag_set; } return CELL_OK; } } u64 counter = 0; const u64 max_counter = timeout ? (timeout / 1000) : ~0; while (true) { u32 signaled; if (ef->signal.try_peek(signaled) && signaled == tid) { std::lock_guard lock(ef->mutex); const u64 flag_set = ef->flags.read_sync(); ef->signal.pop(signaled); for (u32 i = 0; i < ef->waiters.size(); i++) { if (ef->waiters[i].tid == tid) { ef->waiters.erase(ef->waiters.begin() + i); if (mode & SYS_EVENT_FLAG_WAIT_CLEAR) { ef->flags &= ~bitptn; } else if (mode & SYS_EVENT_FLAG_WAIT_CLEAR_ALL) { ef->flags &= 0; } if (u32 target = ef->check()) { ef->signal.push(target); } if (result) { *result = flag_set; } return CELL_OK; } } return CELL_ECANCELED; } std::this_thread::sleep_for(std::chrono::milliseconds(1)); // hack if (counter++ > max_counter) { std::lock_guard lock(ef->mutex); for (u32 i = 0; i < ef->waiters.size(); i++) { if (ef->waiters[i].tid == tid) { ef->waiters.erase(ef->waiters.begin() + i); break; } } return CELL_ETIMEDOUT; } if (Emu.IsStopped()) { sys_event_flag.Warning("sys_event_flag_wait(id=%d) aborted", eflag_id); return CELL_OK; } } } s32 sys_event_flag_trywait(u32 eflag_id, u64 bitptn, u32 mode, vm::ptr result) { sys_event_flag.Log("sys_event_flag_trywait(eflag_id=%d, bitptn=0x%llx, mode=0x%x, result_addr=0x%x)", eflag_id, bitptn, mode, result.addr()); if (result) *result = 0; switch (mode & 0xf) { case SYS_EVENT_FLAG_WAIT_AND: break; case SYS_EVENT_FLAG_WAIT_OR: break; default: return CELL_EINVAL; } switch (mode & ~0xf) { case 0: break; // ??? case SYS_EVENT_FLAG_WAIT_CLEAR: break; case SYS_EVENT_FLAG_WAIT_CLEAR_ALL: break; default: return CELL_EINVAL; } std::shared_ptr ef; if (!sys_event_flag.CheckId(eflag_id, ef)) return CELL_ESRCH; std::lock_guard lock(ef->mutex); const u64 flag_set = ef->flags.read_sync(); if (((mode & SYS_EVENT_FLAG_WAIT_AND) && (flag_set & bitptn) == bitptn) || ((mode & SYS_EVENT_FLAG_WAIT_OR) && (flag_set & bitptn))) { if (mode & SYS_EVENT_FLAG_WAIT_CLEAR) { ef->flags &= ~bitptn; } else if (mode & SYS_EVENT_FLAG_WAIT_CLEAR_ALL) { ef->flags &= 0; } if (result) { *result = flag_set; } return CELL_OK; } return CELL_EBUSY; } s32 sys_event_flag_set(u32 eflag_id, u64 bitptn) { sys_event_flag.Log("sys_event_flag_set(eflag_id=%d, bitptn=0x%llx)", eflag_id, bitptn); std::shared_ptr ef; if (!sys_event_flag.CheckId(eflag_id, ef)) return CELL_ESRCH; std::lock_guard lock(ef->mutex); ef->flags |= bitptn; if (u32 target = ef->check()) { ef->signal.push(target); } return CELL_OK; } s32 sys_event_flag_clear(u32 eflag_id, u64 bitptn) { sys_event_flag.Log("sys_event_flag_clear(eflag_id=%d, bitptn=0x%llx)", eflag_id, bitptn); std::shared_ptr ef; if (!sys_event_flag.CheckId(eflag_id, ef)) return CELL_ESRCH; std::lock_guard lock(ef->mutex); ef->flags &= bitptn; return CELL_OK; } s32 sys_event_flag_cancel(u32 eflag_id, vm::ptr num) { sys_event_flag.Log("sys_event_flag_cancel(eflag_id=%d, num_addr=0x%x)", eflag_id, num.addr()); std::shared_ptr ef; if (!sys_event_flag.CheckId(eflag_id, ef)) return CELL_ESRCH; std::vector tids; { std::lock_guard lock(ef->mutex); tids.resize(ef->waiters.size()); for (u32 i = 0; i < ef->waiters.size(); i++) { tids[i] = ef->waiters[i].tid; } ef->waiters.clear(); } for (auto& v : tids) { ef->signal.push(v); } if (Emu.IsStopped()) { sys_event_flag.Warning("sys_event_flag_cancel(id=%d) aborted", eflag_id); return CELL_OK; } if (num) { *num = (u32)tids.size(); } return CELL_OK; } s32 sys_event_flag_get(u32 eflag_id, vm::ptr flags) { sys_event_flag.Log("sys_event_flag_get(eflag_id=%d, flags_addr=0x%x)", eflag_id, flags.addr()); if (!flags) { sys_event_flag.Error("sys_event_flag_create(): invalid memory access (flags_addr=0x%x)", flags.addr()); return CELL_EFAULT; } std::shared_ptr ef; if (!sys_event_flag.CheckId(eflag_id, ef)) return CELL_ESRCH; *flags = ef->flags.read_sync(); return CELL_OK; }