#include "stdafx.h" #include "Utilities/Config.h" #include "Emu/Memory/Memory.h" #include "Emu/System.h" #include "Emu/IdManager.h" #include "PPUThread.h" #include "PPUInterpreter.h" #include "PPUModule.h" enum class ppu_decoder_type { precise, fast, llvm, }; cfg::map_entry g_cfg_ppu_decoder(cfg::root.core, "PPU Decoder", 1, { { "Interpreter (precise)", ppu_decoder_type::precise }, { "Interpreter (fast)", ppu_decoder_type::fast }, { "Recompiler (LLVM)", ppu_decoder_type::llvm }, }); const ppu_decoder s_ppu_interpreter_precise; const ppu_decoder s_ppu_interpreter_fast; std::string PPUThread::get_name() const { return fmt::format("PPU[0x%x] Thread (%s)", id, name); } std::string PPUThread::dump() const { std::string ret = "Registers:\n=========\n"; for (uint i = 0; i<32; ++i) ret += fmt::format("GPR[%d] = 0x%llx\n", i, GPR[i]); for (uint i = 0; i<32; ++i) ret += fmt::format("FPR[%d] = %.6G\n", i, FPR[i]); for (uint i = 0; i<32; ++i) ret += fmt::format("VR[%d] = 0x%s [%s]\n", i, VR[i].to_hex().c_str(), VR[i].to_xyzw().c_str()); ret += fmt::format("CR = 0x%08x\n", GetCR()); ret += fmt::format("LR = 0x%llx\n", LR); ret += fmt::format("CTR = 0x%llx\n", CTR); ret += fmt::format("XER = [CA=%u | OV=%u | SO=%u | CNT=%u]\n", u32{ CA }, u32{ OV }, u32{ SO }, u32{ XCNT }); //ret += fmt::format("FPSCR = 0x%x " // "[RN=%d | NI=%d | XE=%d | ZE=%d | UE=%d | OE=%d | VE=%d | " // "VXCVI=%d | VXSQRT=%d | VXSOFT=%d | FPRF=%d | " // "FI=%d | FR=%d | VXVC=%d | VXIMZ=%d | " // "VXZDZ=%d | VXIDI=%d | VXISI=%d | VXSNAN=%d | " // "XX=%d | ZX=%d | UX=%d | OX=%d | VX=%d | FEX=%d | FX=%d]\n", // FPSCR.FPSCR, // u32{ FPSCR.RN }, // u32{ FPSCR.NI }, u32{ FPSCR.XE }, u32{ FPSCR.ZE }, u32{ FPSCR.UE }, u32{ FPSCR.OE }, u32{ FPSCR.VE }, // u32{ FPSCR.VXCVI }, u32{ FPSCR.VXSQRT }, u32{ FPSCR.VXSOFT }, u32{ FPSCR.FPRF }, // u32{ FPSCR.FI }, u32{ FPSCR.FR }, u32{ FPSCR.VXVC }, u32{ FPSCR.VXIMZ }, // u32{ FPSCR.VXZDZ }, u32{ FPSCR.VXIDI }, u32{ FPSCR.VXISI }, u32{ FPSCR.VXSNAN }, // u32{ FPSCR.XX }, u32{ FPSCR.ZX }, u32{ FPSCR.UX }, u32{ FPSCR.OX }, u32{ FPSCR.VX }, u32{ FPSCR.FEX }, u32{ FPSCR.FX }); return ret; } void PPUThread::cpu_init() { if (!stack_addr) { if (!stack_size) { throw EXCEPTION("Invalid stack size"); } stack_addr = vm::alloc(stack_size, vm::stack); if (!stack_addr) { throw EXCEPTION("Out of stack memory"); } } GPR[1] = align(stack_addr + stack_size, 0x200) - 0x200; } extern thread_local std::string(*g_tls_log_prefix)(); void PPUThread::cpu_task() { //SetHostRoundingMode(FPSCR_RN_NEAR); if (custom_task) { if (check_status()) return; return custom_task(*this); } g_tls_log_prefix = [] { const auto cpu = static_cast(get_current_cpu_thread()); return fmt::format("%s [0x%08x]", cpu->get_name(), cpu->pc); }; const auto base = vm::_ptr(0); // Select opcode table const auto& table = *( g_cfg_ppu_decoder.get() == ppu_decoder_type::precise ? &s_ppu_interpreter_precise.get_table() : g_cfg_ppu_decoder.get() == ppu_decoder_type::fast ? &s_ppu_interpreter_fast.get_table() : throw std::logic_error("Invalid PPU decoder")); v128 _op; decltype(&ppu_interpreter::UNK) func0, func1, func2, func3; while (true) { if (UNLIKELY(state.load())) { if (check_status()) return; } // Reinitialize { const auto _ops = _mm_shuffle_epi8(_mm_lddqu_si128(reinterpret_cast(base + pc)), _mm_set_epi8(12, 13, 14, 15, 8, 9, 10, 11, 4, 5, 6, 7, 0, 1, 2, 3)); _op.vi = _ops; const v128 _i = v128::fromV(_mm_and_si128(_mm_or_si128(_mm_slli_epi32(_op.vi, 6), _mm_srli_epi32(_op.vi, 26)), _mm_set1_epi32(0x1ffff))); func0 = table[_i._u32[0]]; func1 = table[_i._u32[1]]; func2 = table[_i._u32[2]]; func3 = table[_i._u32[3]]; } while (LIKELY(func0(*this, { _op._u32[0] }))) { if (pc += 4, LIKELY(func1(*this, { _op._u32[1] }))) { if (pc += 4, LIKELY(func2(*this, { _op._u32[2] }))) { pc += 4; func0 = func3; const auto _ops = _mm_shuffle_epi8(_mm_lddqu_si128(reinterpret_cast(base + pc + 4)), _mm_set_epi8(12, 13, 14, 15, 8, 9, 10, 11, 4, 5, 6, 7, 0, 1, 2, 3)); _op.vi = _mm_alignr_epi8(_ops, _op.vi, 12); const v128 _i = v128::fromV(_mm_and_si128(_mm_or_si128(_mm_slli_epi32(_op.vi, 6), _mm_srli_epi32(_op.vi, 26)), _mm_set1_epi32(0x1ffff))); func1 = table[_i._u32[1]]; func2 = table[_i._u32[2]]; func3 = table[_i._u32[3]]; if (UNLIKELY(state.load())) { break; } continue; } break; } break; } } } constexpr auto stop_state = make_bitset(cpu_state::stop, cpu_state::exit, cpu_state::suspend); atomic_t g_ppu_core[2]{}; bool PPUThread::handle_interrupt() { // Reschedule and wake up a new thread, possibly this one as well. return false; // Check virtual core allocation if (g_ppu_core[0] != id && g_ppu_core[1] != id) { auto cpu0 = idm::get(g_ppu_core[0]); auto cpu1 = idm::get(g_ppu_core[1]); if (cpu0 && cpu1) { if (cpu1->prio > cpu0->prio) { cpu0 = std::move(cpu1); } // Preempt thread with the lowest priority if (prio < cpu0->prio) { cpu0->state += cpu_state::interrupt; } } else { // Try to obtain a virtual core in optimistic way if (g_ppu_core[0].compare_and_swap_test(0, id) || g_ppu_core[1].compare_and_swap_test(0, id)) { state -= cpu_state::interrupt; return true; } } return false; } // Select appropriate thread u32 top_prio = -1; u32 selected = -1; idm::select([&](u32 id, PPUThread& ppu) { // Exclude suspended and low-priority threads if (!ppu.state.test(stop_state) && ppu.prio < top_prio /*&& (!ppu.is_sleep() || ppu.state & cpu_state::signal)*/) { top_prio = ppu.prio; selected = id; } }); // If current thread selected if (selected == id) { state -= cpu_state::interrupt; VERIFY(g_ppu_core[0] == id || g_ppu_core[1] == id); return true; } // If another thread selected const auto thread = idm::get(selected); // Lend virtual core to another thread if (thread && thread->state.test_and_reset(cpu_state::interrupt)) { g_ppu_core[0].compare_and_swap(id, thread->id); g_ppu_core[1].compare_and_swap(id, thread->id); (*thread)->lock_notify(); } else { g_ppu_core[0].compare_and_swap(id, 0); g_ppu_core[1].compare_and_swap(id, 0); } return false; } PPUThread::~PPUThread() { if (stack_addr) { vm::dealloc_verbose_nothrow(stack_addr, vm::stack); } } PPUThread::PPUThread(const std::string& name) : cpu_thread(cpu_type::ppu, name) { } be_t* PPUThread::get_stack_arg(s32 i, u64 align) { if (align != 1 && align != 2 && align != 4 && align != 8 && align != 16) throw fmt::exception("Unsupported alignment: 0x%llx" HERE, align); return vm::_ptr(vm::cast((GPR[1] + 0x30 + 0x8 * (i - 1)) & (0 - align), HERE)); } void PPUThread::fast_call(u32 addr, u32 rtoc) { auto old_PC = pc; auto old_stack = GPR[1]; auto old_rtoc = GPR[2]; auto old_LR = LR; auto old_task = std::move(custom_task); pc = addr; GPR[2] = rtoc; LR = Emu.GetCPUThreadStop(); custom_task = nullptr; try { cpu_task(); } catch (cpu_state _s) { state += _s; if (_s != cpu_state::ret) throw; } state -= cpu_state::ret; pc = old_PC; if (GPR[1] != old_stack) // GPR[1] shouldn't change { throw EXCEPTION("Stack inconsistency (addr=0x%x, rtoc=0x%x, SP=0x%llx, old=0x%llx)", addr, rtoc, GPR[1], old_stack); } GPR[2] = old_rtoc; LR = old_LR; custom_task = std::move(old_task); //if (custom_task) //{ // state += cpu_state::interrupt; // handle_interrupt(); //} }