#include "device.h" #include "instance.hpp" #include "util/logs.hpp" #include "Emu/system_config.h" namespace vk { // Global shared render device const render_device* g_render_device = nullptr; void physical_device::get_physical_device_features(bool allow_extensions) { if (!allow_extensions) { vkGetPhysicalDeviceFeatures(dev, &features); return; } supported_extensions instance_extensions(supported_extensions::instance); supported_extensions device_extensions(supported_extensions::device, nullptr, dev); if (!instance_extensions.is_supported(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME)) { vkGetPhysicalDeviceFeatures(dev, &features); } else { VkPhysicalDeviceFeatures2KHR features2; features2.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2; features2.pNext = nullptr; VkPhysicalDeviceFloat16Int8FeaturesKHR shader_support_info{}; if (device_extensions.is_supported(VK_KHR_SHADER_FLOAT16_INT8_EXTENSION_NAME)) { shader_support_info.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT16_INT8_FEATURES_KHR; features2.pNext = &shader_support_info; } if (device_extensions.is_supported(VK_KHR_DRIVER_PROPERTIES_EXTENSION_NAME)) { driver_properties.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRIVER_PROPERTIES_KHR; driver_properties.pNext = features2.pNext; features2.pNext = &driver_properties; } auto _vkGetPhysicalDeviceFeatures2KHR = reinterpret_cast(vkGetInstanceProcAddr(parent, "vkGetPhysicalDeviceFeatures2KHR")); ensure(_vkGetPhysicalDeviceFeatures2KHR); // "vkGetInstanceProcAddress failed to find entry point!" _vkGetPhysicalDeviceFeatures2KHR(dev, &features2); shader_types_support.allow_float64 = !!features2.features.shaderFloat64; shader_types_support.allow_float16 = !!shader_support_info.shaderFloat16; shader_types_support.allow_int8 = !!shader_support_info.shaderInt8; features = features2.features; } stencil_export_support = device_extensions.is_supported(VK_EXT_SHADER_STENCIL_EXPORT_EXTENSION_NAME); conditional_render_support = device_extensions.is_supported(VK_EXT_CONDITIONAL_RENDERING_EXTENSION_NAME); external_memory_host_support = device_extensions.is_supported(VK_EXT_EXTERNAL_MEMORY_HOST_EXTENSION_NAME); unrestricted_depth_range_support = device_extensions.is_supported(VK_EXT_DEPTH_RANGE_UNRESTRICTED_EXTENSION_NAME); debug_utils_support = instance_extensions.is_supported(VK_EXT_DEBUG_UTILS_EXTENSION_NAME); surface_capabilities_2_support = instance_extensions.is_supported(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME); } void physical_device::create(VkInstance context, VkPhysicalDevice pdev, bool allow_extensions) { dev = pdev; parent = context; vkGetPhysicalDeviceProperties(pdev, &props); vkGetPhysicalDeviceMemoryProperties(pdev, &memory_properties); get_physical_device_features(allow_extensions); rsx_log.always()("Found vulkan-compatible GPU: '%s' running on driver %s", get_name(), get_driver_version()); if (get_driver_vendor() == driver_vendor::RADV && get_name().find("LLVM 8.0.0") != umax) { // Serious driver bug causing black screens // See https://bugs.freedesktop.org/show_bug.cgi?id=110970 rsx_log.fatal("RADV drivers have a major driver bug with LLVM 8.0.0 resulting in no visual output. Upgrade to LLVM version 8.0.1 or greater to avoid this issue."); } else if (get_driver_vendor() == driver_vendor::NVIDIA) { #ifdef _WIN32 // SPIRV bugs were fixed in 452.28 for windows const u32 threshold_version = (452u >> 22) | (28 >> 14); #else // SPIRV bugs were fixed in 450.56 for linux/BSD const u32 threshold_version = (450u >> 22) | (56 >> 14); #endif const auto current_version = props.driverVersion & ~0x3fffu; // Clear patch and revision fields if (current_version < threshold_version) { rsx_log.error("Your current NVIDIA graphics driver version %s has known issues and is unsupported. Update to the latest NVIDIA driver.", get_driver_version()); } } if (get_chip_class() == chip_class::AMD_vega) { // Disable fp16 if driver uses LLVM emitter. It does fine with AMD proprietary drivers though. shader_types_support.allow_float16 = (driver_properties.driverID == VK_DRIVER_ID_AMD_PROPRIETARY_KHR); } } std::string physical_device::get_name() const { return props.deviceName; } driver_vendor physical_device::get_driver_vendor() const { if (!driver_properties.driverID) { const auto gpu_name = get_name(); if (gpu_name.find("Radeon") != umax) { return driver_vendor::AMD; } if (gpu_name.find("NVIDIA") != umax || gpu_name.find("GeForce") != umax || gpu_name.find("Quadro") != umax) { return driver_vendor::NVIDIA; } if (gpu_name.find("RADV") != umax) { return driver_vendor::RADV; } if (gpu_name.find("Intel") != umax) { return driver_vendor::INTEL; } return driver_vendor::unknown; } else { switch (driver_properties.driverID) { case VK_DRIVER_ID_AMD_PROPRIETARY_KHR: case VK_DRIVER_ID_AMD_OPEN_SOURCE_KHR: return driver_vendor::AMD; case VK_DRIVER_ID_MESA_RADV_KHR: return driver_vendor::RADV; case VK_DRIVER_ID_NVIDIA_PROPRIETARY_KHR: return driver_vendor::NVIDIA; case VK_DRIVER_ID_INTEL_PROPRIETARY_WINDOWS_KHR: case VK_DRIVER_ID_INTEL_OPEN_SOURCE_MESA_KHR: return driver_vendor::INTEL; default: // Mobile return driver_vendor::unknown; } } } std::string physical_device::get_driver_version() const { switch (get_driver_vendor()) { case driver_vendor::NVIDIA: { // 10 + 8 + 8 + 6 const auto major_version = props.driverVersion >> 22; const auto minor_version = (props.driverVersion >> 14) & 0xff; const auto patch = (props.driverVersion >> 6) & 0xff; const auto revision = (props.driverVersion & 0x3f); return fmt::format("%u.%u.%u.%u", major_version, minor_version, patch, revision); } default: { // 10 + 10 + 12 (standard vulkan encoding created with VK_MAKE_VERSION) return fmt::format("%u.%u.%u", (props.driverVersion >> 22), (props.driverVersion >> 12) & 0x3ff, (props.driverVersion) & 0x3ff); } } } chip_class physical_device::get_chip_class() const { return get_chip_family(props.vendorID, props.deviceID); } u32 physical_device::get_queue_count() const { if (!queue_props.empty()) return ::size32(queue_props); u32 count = 0; vkGetPhysicalDeviceQueueFamilyProperties(dev, &count, nullptr); return count; } const VkQueueFamilyProperties& physical_device::get_queue_properties(u32 queue) { if (queue_props.empty()) { u32 count = 0; vkGetPhysicalDeviceQueueFamilyProperties(dev, &count, nullptr); queue_props.resize(count); vkGetPhysicalDeviceQueueFamilyProperties(dev, &count, queue_props.data()); } if (queue >= queue_props.size()) fmt::throw_exception("Bad queue index passed to get_queue_properties (%u)", queue); return queue_props[queue]; } const VkPhysicalDeviceMemoryProperties& physical_device::get_memory_properties() const { return memory_properties; } const VkPhysicalDeviceLimits& physical_device::get_limits() const { return props.limits; } physical_device::operator VkPhysicalDevice() const { return dev; } physical_device::operator VkInstance() const { return parent; } // Render Device - The actual usable device void render_device::create(vk::physical_device& pdev, u32 graphics_queue_idx, u32 present_queue_idx, u32 transfer_queue_idx) { std::string message_on_error; float queue_priorities[1] = { 0.f }; pgpu = &pdev; ensure(graphics_queue_idx == present_queue_idx || present_queue_idx == umax); // TODO std::vector device_queues; auto& graphics_queue = device_queues.emplace_back(); graphics_queue.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO; graphics_queue.pNext = NULL; graphics_queue.flags = 0; graphics_queue.queueFamilyIndex = graphics_queue_idx; graphics_queue.queueCount = 1; graphics_queue.pQueuePriorities = queue_priorities; u32 transfer_queue_sub_index = 0; if (transfer_queue_idx == umax) { // Transfer queue must be a valid device queue rsx_log.warning("Dedicated transfer+compute queue was not found on this GPU. Will use graphics queue instead."); transfer_queue_idx = graphics_queue_idx; // Check if we can at least get a second graphics queue if (pdev.get_queue_properties(graphics_queue_idx).queueCount > 1) { rsx_log.notice("Will use a spare graphics queue to push transfer operations."); graphics_queue.queueCount++; transfer_queue_sub_index = 1; } } m_graphics_queue_family = graphics_queue_idx; m_present_queue_family = present_queue_idx; m_transfer_queue_family = transfer_queue_idx; if (graphics_queue_idx != transfer_queue_idx) { auto& transfer_queue = device_queues.emplace_back(); transfer_queue.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO; transfer_queue.pNext = NULL; transfer_queue.flags = 0; transfer_queue.queueFamilyIndex = transfer_queue_idx; transfer_queue.queueCount = 1; transfer_queue.pQueuePriorities = queue_priorities; } // Set up instance information std::vector requested_extensions = { VK_KHR_SWAPCHAIN_EXTENSION_NAME }; // Enable hardware features manually // Currently we require: // 1. Anisotropic sampling // 2. DXT support // 3. Indexable storage buffers VkPhysicalDeviceFeatures enabled_features{}; if (pgpu->shader_types_support.allow_float16) { requested_extensions.push_back(VK_KHR_SHADER_FLOAT16_INT8_EXTENSION_NAME); } if (pgpu->conditional_render_support) { requested_extensions.push_back(VK_EXT_CONDITIONAL_RENDERING_EXTENSION_NAME); } if (pgpu->unrestricted_depth_range_support) { requested_extensions.push_back(VK_EXT_DEPTH_RANGE_UNRESTRICTED_EXTENSION_NAME); } if (pgpu->external_memory_host_support) { requested_extensions.push_back(VK_KHR_EXTERNAL_MEMORY_EXTENSION_NAME); requested_extensions.push_back(VK_EXT_EXTERNAL_MEMORY_HOST_EXTENSION_NAME); } enabled_features.robustBufferAccess = VK_TRUE; enabled_features.fullDrawIndexUint32 = VK_TRUE; enabled_features.independentBlend = VK_TRUE; enabled_features.logicOp = VK_TRUE; enabled_features.depthClamp = VK_TRUE; enabled_features.depthBounds = VK_TRUE; enabled_features.wideLines = VK_TRUE; enabled_features.largePoints = VK_TRUE; enabled_features.shaderFloat64 = VK_TRUE; if (g_cfg.video.antialiasing_level != msaa_level::none) { // MSAA features enabled_features.sampleRateShading = VK_TRUE; enabled_features.alphaToOne = VK_TRUE; enabled_features.shaderStorageImageMultisample = VK_TRUE; // enabled_features.shaderStorageImageReadWithoutFormat = VK_TRUE; // Unused currently, may be needed soon enabled_features.shaderStorageImageWriteWithoutFormat = VK_TRUE; } // enabled_features.shaderSampledImageArrayDynamicIndexing = TRUE; // Unused currently but will be needed soon enabled_features.shaderClipDistance = VK_TRUE; // enabled_features.shaderCullDistance = VK_TRUE; // Alt notation of clip distance enabled_features.samplerAnisotropy = VK_TRUE; enabled_features.textureCompressionBC = VK_TRUE; enabled_features.shaderStorageBufferArrayDynamicIndexing = VK_TRUE; // If we're on lavapipe / llvmpipe, disable unimplemented features: // - shaderStorageBufferArrayDynamicIndexing // as of mesa 21.1.0-dev (aea36ee05e9, 2020-02-10) // Several games work even if we disable these, testing purpose only if (pgpu->get_name().find("llvmpipe") != umax) { if (!pgpu->features.shaderStorageBufferArrayDynamicIndexing) { rsx_log.error("Running lavapipe without support for shaderStorageBufferArrayDynamicIndexing"); enabled_features.shaderStorageBufferArrayDynamicIndexing = VK_FALSE; } } // Optionally disable unsupported stuff if (!pgpu->features.shaderStorageImageMultisample || !pgpu->features.shaderStorageImageWriteWithoutFormat) { // Disable MSAA if any of these two features are unsupported if (g_cfg.video.antialiasing_level != msaa_level::none) { rsx_log.error("Your GPU driver does not support some required MSAA features. MSAA will be disabled."); g_cfg.video.antialiasing_level.set(msaa_level::none); } enabled_features.sampleRateShading = VK_FALSE; enabled_features.alphaToOne = VK_FALSE; enabled_features.shaderStorageImageMultisample = VK_FALSE; enabled_features.shaderStorageImageWriteWithoutFormat = VK_FALSE; } if (!pgpu->features.samplerAnisotropy) { rsx_log.error("Your GPU does not support anisotropic filtering. Graphics may not render correctly."); enabled_features.samplerAnisotropy = VK_FALSE; } if (!pgpu->features.shaderFloat64) { rsx_log.error("Your GPU does not support double precision floats in shaders. Graphics may not render correctly."); enabled_features.shaderFloat64 = VK_FALSE; } if (!pgpu->features.depthBounds) { rsx_log.error("Your GPU does not support depth bounds testing. Graphics may not render correctly."); enabled_features.depthBounds = VK_FALSE; } if (!pgpu->features.wideLines) { rsx_log.error("Your GPU does not support wide lines. Graphics may not render correctly."); enabled_features.wideLines = VK_FALSE; } if (!pgpu->features.sampleRateShading && enabled_features.sampleRateShading) { rsx_log.error("Your GPU does not support sample rate shading for multisampling. Graphics may be inaccurate when MSAA is enabled."); enabled_features.sampleRateShading = VK_FALSE; } if (!pgpu->features.alphaToOne && enabled_features.alphaToOne) { // AMD proprietary drivers do not expose alphaToOne support rsx_log.error("Your GPU does not support alpha-to-one for multisampling. Graphics may be inaccurate when MSAA is enabled."); enabled_features.alphaToOne = VK_FALSE; } VkDeviceCreateInfo device = {}; device.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO; device.pNext = nullptr; device.queueCreateInfoCount = ::size32(device_queues); device.pQueueCreateInfos = device_queues.data(); device.enabledLayerCount = 0; device.ppEnabledLayerNames = nullptr; // Deprecated device.enabledExtensionCount = ::size32(requested_extensions); device.ppEnabledExtensionNames = requested_extensions.data(); device.pEnabledFeatures = &enabled_features; VkPhysicalDeviceFloat16Int8FeaturesKHR shader_support_info{}; if (pgpu->shader_types_support.allow_float16) { // Allow use of f16 type in shaders if possible shader_support_info.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT16_INT8_FEATURES_KHR; shader_support_info.shaderFloat16 = VK_TRUE; device.pNext = &shader_support_info; rsx_log.notice("GPU/driver supports float16 data types natively. Using native float16_t variables if possible."); } else { rsx_log.notice("GPU/driver lacks support for float16 data types. All float16_t arithmetic will be emulated with float32_t."); } CHECK_RESULT_EX(vkCreateDevice(*pgpu, &device, nullptr, &dev), message_on_error); // Initialize queues vkGetDeviceQueue(dev, graphics_queue_idx, 0, &m_graphics_queue); vkGetDeviceQueue(dev, transfer_queue_idx, transfer_queue_sub_index, &m_transfer_queue); if (present_queue_idx != umax) { vkGetDeviceQueue(dev, present_queue_idx, 0, &m_present_queue); } // Import optional function endpoints if (pgpu->conditional_render_support) { _vkCmdBeginConditionalRenderingEXT = reinterpret_cast(vkGetDeviceProcAddr(dev, "vkCmdBeginConditionalRenderingEXT")); _vkCmdEndConditionalRenderingEXT = reinterpret_cast(vkGetDeviceProcAddr(dev, "vkCmdEndConditionalRenderingEXT")); } if (pgpu->debug_utils_support) { _vkSetDebugUtilsObjectNameEXT = reinterpret_cast(vkGetDeviceProcAddr(dev, "vkSetDebugUtilsObjectNameEXT")); _vkQueueInsertDebugUtilsLabelEXT = reinterpret_cast(vkGetDeviceProcAddr(dev, "vkQueueInsertDebugUtilsLabelEXT")); _vkCmdInsertDebugUtilsLabelEXT = reinterpret_cast(vkGetDeviceProcAddr(dev, "vkCmdInsertDebugUtilsLabelEXT")); } memory_map = vk::get_memory_mapping(pdev); m_formats_support = vk::get_optimal_tiling_supported_formats(pdev); m_pipeline_binding_table = vk::get_pipeline_binding_table(pdev); if (pgpu->external_memory_host_support) { memory_map._vkGetMemoryHostPointerPropertiesEXT = reinterpret_cast(vkGetDeviceProcAddr(dev, "vkGetMemoryHostPointerPropertiesEXT")); } if (g_cfg.video.disable_vulkan_mem_allocator) m_allocator = std::make_unique(dev, pdev); else m_allocator = std::make_unique(dev, pdev); } void render_device::destroy() { if (dev && pgpu) { if (m_allocator) { m_allocator->destroy(); m_allocator.reset(); } vkDestroyDevice(dev, nullptr); dev = nullptr; memory_map = {}; m_formats_support = {}; } } VkQueue render_device::get_present_queue() const { return m_present_queue; } VkQueue render_device::get_graphics_queue() const { return m_graphics_queue; } VkQueue render_device::get_transfer_queue() const { return m_transfer_queue; } u32 render_device::get_graphics_queue_family() const { return m_graphics_queue_family; } u32 render_device::get_present_queue_family() const { return m_graphics_queue_family; } u32 render_device::get_transfer_queue_family() const { return m_transfer_queue_family; } const VkFormatProperties render_device::get_format_properties(VkFormat format) { auto found = pgpu->format_properties.find(format); if (found != pgpu->format_properties.end()) { return found->second; } auto& props = pgpu->format_properties[format]; vkGetPhysicalDeviceFormatProperties(*pgpu, format, &props); return props; } bool render_device::get_compatible_memory_type(u32 typeBits, u32 desired_mask, u32* type_index) const { VkPhysicalDeviceMemoryProperties mem_infos = pgpu->get_memory_properties(); for (u32 i = 0; i < 32; i++) { if ((typeBits & 1) == 1) { if ((mem_infos.memoryTypes[i].propertyFlags & desired_mask) == desired_mask) { if (type_index) { *type_index = i; } return true; } } typeBits >>= 1; } return false; } const physical_device& render_device::gpu() const { return *pgpu; } const memory_type_mapping& render_device::get_memory_mapping() const { return memory_map; } const gpu_formats_support& render_device::get_formats_support() const { return m_formats_support; } const pipeline_binding_table& render_device::get_pipeline_binding_table() const { return m_pipeline_binding_table; } const gpu_shader_types_support& render_device::get_shader_types_support() const { return pgpu->shader_types_support; } bool render_device::get_shader_stencil_export_support() const { return pgpu->stencil_export_support; } bool render_device::get_depth_bounds_support() const { return pgpu->features.depthBounds != VK_FALSE; } bool render_device::get_alpha_to_one_support() const { return pgpu->features.alphaToOne != VK_FALSE; } bool render_device::get_anisotropic_filtering_support() const { return pgpu->features.samplerAnisotropy != VK_FALSE; } bool render_device::get_wide_lines_support() const { return pgpu->features.wideLines != VK_FALSE; } bool render_device::get_conditional_render_support() const { return pgpu->conditional_render_support; } bool render_device::get_unrestricted_depth_range_support() const { return pgpu->unrestricted_depth_range_support; } bool render_device::get_external_memory_host_support() const { return pgpu->external_memory_host_support; } bool render_device::get_surface_capabilities_2_support() const { return pgpu->surface_capabilities_2_support; } bool render_device::get_debug_utils_support() const { return g_cfg.video.renderdoc_compatiblity && pgpu->debug_utils_support; } mem_allocator_base* render_device::get_allocator() const { return m_allocator.get(); } render_device::operator VkDevice() const { return dev; } // Shared Util memory_type_mapping get_memory_mapping(const vk::physical_device& dev) { VkPhysicalDevice pdev = dev; VkPhysicalDeviceMemoryProperties memory_properties; vkGetPhysicalDeviceMemoryProperties(pdev, &memory_properties); memory_type_mapping result; result.device_local = VK_MAX_MEMORY_TYPES; result.host_visible_coherent = VK_MAX_MEMORY_TYPES; bool host_visible_cached = false; VkDeviceSize host_visible_vram_size = 0; VkDeviceSize device_local_vram_size = 0; for (u32 i = 0; i < memory_properties.memoryTypeCount; i++) { VkMemoryHeap& heap = memory_properties.memoryHeaps[memory_properties.memoryTypes[i].heapIndex]; bool is_device_local = !!(memory_properties.memoryTypes[i].propertyFlags & VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); if (is_device_local) { if (device_local_vram_size < heap.size) { result.device_local = i; device_local_vram_size = heap.size; } } bool is_host_visible = !!(memory_properties.memoryTypes[i].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT); bool is_host_coherent = !!(memory_properties.memoryTypes[i].propertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT); bool is_cached = !!(memory_properties.memoryTypes[i].propertyFlags & VK_MEMORY_PROPERTY_HOST_CACHED_BIT); if (is_host_coherent && is_host_visible) { if ((is_cached && !host_visible_cached) || (host_visible_vram_size < heap.size)) { result.host_visible_coherent = i; host_visible_vram_size = heap.size; host_visible_cached = is_cached; } } } if (result.device_local == VK_MAX_MEMORY_TYPES) fmt::throw_exception("GPU doesn't support device local memory"); if (result.host_visible_coherent == VK_MAX_MEMORY_TYPES) fmt::throw_exception("GPU doesn't support host coherent device local memory"); return result; } gpu_formats_support get_optimal_tiling_supported_formats(const physical_device& dev) { gpu_formats_support result = {}; VkFormatProperties props; vkGetPhysicalDeviceFormatProperties(dev, VK_FORMAT_D24_UNORM_S8_UINT, &props); result.d24_unorm_s8 = !!(props.optimalTilingFeatures & VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT) && !!(props.optimalTilingFeatures & VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT) && !!(props.optimalTilingFeatures & VK_FORMAT_FEATURE_BLIT_SRC_BIT) && !!(props.optimalTilingFeatures & VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT); vkGetPhysicalDeviceFormatProperties(dev, VK_FORMAT_D32_SFLOAT_S8_UINT, &props); result.d32_sfloat_s8 = !!(props.optimalTilingFeatures & VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT) && !!(props.optimalTilingFeatures & VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT) && !!(props.optimalTilingFeatures & VK_FORMAT_FEATURE_BLIT_SRC_BIT); // Hide d24_s8 if force high precision z buffer is enabled if (g_cfg.video.force_high_precision_z_buffer && result.d32_sfloat_s8) result.d24_unorm_s8 = false; // Checks if BGRA8 images can be used for blitting vkGetPhysicalDeviceFormatProperties(dev, VK_FORMAT_B8G8R8A8_UNORM, &props); result.bgra8_linear = !!(props.linearTilingFeatures & VK_FORMAT_FEATURE_BLIT_SRC_BIT); // Check if device supports RGBA8 format vkGetPhysicalDeviceFormatProperties(dev, VK_FORMAT_R8G8B8A8_UNORM, &props); if (!(props.optimalTilingFeatures & VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT) || !(props.optimalTilingFeatures & VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT) || !(props.optimalTilingFeatures & VK_FORMAT_FEATURE_BLIT_SRC_BIT)) { // Non-fatal. Most games use BGRA layout due to legacy reasons as old GPUs typically supported BGRA and RGBA was emulated. rsx_log.error("Your GPU and/or driver does not support RGBA8 format. This can cause problems in some rare games that use this memory layout."); } result.argb8_linear = !!(props.linearTilingFeatures & VK_FORMAT_FEATURE_BLIT_SRC_BIT); return result; } pipeline_binding_table get_pipeline_binding_table(const vk::physical_device& dev) { pipeline_binding_table result{}; // Need to check how many samplers are supported by the driver const auto usable_samplers = std::min(dev.get_limits().maxPerStageDescriptorSampledImages, 32u); result.vertex_textures_first_bind_slot = result.textures_first_bind_slot + usable_samplers; result.total_descriptor_bindings = result.vertex_textures_first_bind_slot + 4; return result; } }