#include "stdafx.h" #include "Utilities/Log.h" #include "Memory.h" #include "Emu/System.h" #include "Emu/CPU/CPUThread.h" #include "Emu/Cell/PPUThread.h" #include "Emu/Cell/SPUThread.h" #include "Emu/ARMv7/ARMv7Thread.h" #ifdef _WIN32 #include #else #include #include #include #include #include /* OS X uses MAP_ANON instead of MAP_ANONYMOUS */ #ifndef MAP_ANONYMOUS #define MAP_ANONYMOUS MAP_ANON #endif #endif namespace vm { void* initialize() { #ifdef _WIN32 HANDLE memory_handle = CreateFileMapping(INVALID_HANDLE_VALUE, NULL, PAGE_READWRITE | SEC_RESERVE, 0x1, 0x0, NULL); void* base_addr = MapViewOfFile(memory_handle, FILE_MAP_WRITE, 0, 0, 0x100000000); g_priv_addr = MapViewOfFile(memory_handle, FILE_MAP_WRITE, 0, 0, 0x100000000); CloseHandle(memory_handle); return base_addr; #else int memory_handle = shm_open("/rpcs3_vm", O_RDWR | O_CREAT | O_EXCL, S_IRUSR | S_IWUSR); if (memory_handle == -1) { std::printf("shm_open('/rpcs3_vm') failed\n"); return (void*)-1; } if (ftruncate(memory_handle, 0x100000000) == -1) { std::printf("ftruncate(memory_handle) failed\n"); shm_unlink("/rpcs3_vm"); return (void*)-1; } void* base_addr = mmap(nullptr, 0x100000000, PROT_NONE, MAP_SHARED, memory_handle, 0); g_priv_addr = mmap(nullptr, 0x100000000, PROT_NONE, MAP_SHARED, memory_handle, 0); shm_unlink("/rpcs3_vm"); std::printf("/rpcs3_vm: g_base_addr = %p, g_priv_addr = %p\n", base_addr, g_priv_addr); return base_addr; #endif } void finalize() { #ifdef _WIN32 UnmapViewOfFile(g_base_addr); UnmapViewOfFile(g_priv_addr); #else munmap(g_base_addr, 0x100000000); munmap(g_priv_addr, 0x100000000); #endif } void* const g_base_addr = (atexit(finalize), initialize()); void* g_priv_addr; std::array, 0x100000000ull / 4096> g_pages = {}; // information about every page class reservation_mutex_t { atomic_t m_owner{}; std::condition_variable m_cv; std::mutex m_mutex; public: reservation_mutex_t() { } bool do_notify; never_inline void lock() { auto owner = get_current_thread_ctrl(); std::unique_lock lock(m_mutex, std::defer_lock); while (auto old = m_owner.compare_and_swap(nullptr, owner)) { if (old == owner) { throw EXCEPTION("Deadlock"); } if (!lock) { lock.lock(); continue; } m_cv.wait_for(lock, std::chrono::milliseconds(1)); } do_notify = true; } never_inline void unlock() { auto owner = get_current_thread_ctrl(); if (!m_owner.compare_and_swap_test(owner, nullptr)) { throw EXCEPTION("Lost lock"); } if (do_notify) { m_cv.notify_one(); } } }; const thread_ctrl_t* g_reservation_owner = nullptr; u32 g_reservation_addr = 0; u32 g_reservation_size = 0; reservation_mutex_t g_reservation_mutex; void _reservation_set(u32 addr, bool no_access = false) { #ifdef _WIN32 DWORD old; if (!VirtualProtect(vm::get_ptr(addr & ~0xfff), 4096, no_access ? PAGE_NOACCESS : PAGE_READONLY, &old)) #else if (mprotect(vm::get_ptr(addr & ~0xfff), 4096, no_access ? PROT_NONE : PROT_READ)) #endif { throw EXCEPTION("System failure (addr=0x%x)", addr); } } void _reservation_break(u32 addr) { if (g_reservation_addr >> 12 == addr >> 12) { #ifdef _WIN32 DWORD old; if (!VirtualProtect(vm::get_ptr(addr & ~0xfff), 4096, PAGE_READWRITE, &old)) #else if (mprotect(vm::get_ptr(addr & ~0xfff), 4096, PROT_READ | PROT_WRITE)) #endif { throw EXCEPTION("System failure (addr=0x%x)", addr); } g_reservation_owner = nullptr; g_reservation_addr = 0; g_reservation_size = 0; } } void reservation_break(u32 addr) { std::lock_guard lock(g_reservation_mutex); _reservation_break(addr); } void reservation_acquire(void* data, u32 addr, u32 size) { std::lock_guard lock(g_reservation_mutex); assert(size == 1 || size == 2 || size == 4 || size == 8 || size == 128); assert((addr + size - 1 & ~0xfff) == (addr & ~0xfff)); const u8 flags = g_pages[addr >> 12].load(); if (!(flags & page_writable) || !(flags & page_allocated) || (flags & page_no_reservations)) { throw EXCEPTION("Invalid page flags (addr=0x%x, size=0x%x, flags=0x%x)", addr, size, flags); } // silent unlocking to prevent priority boost for threads going to break reservation //g_reservation_mutex.do_notify = false; // break previous reservation if (g_reservation_owner) { _reservation_break(g_reservation_addr); } // change memory protection to read-only _reservation_set(addr); // may not be necessary _mm_mfence(); // set additional information g_reservation_addr = addr; g_reservation_size = size; g_reservation_owner = get_current_thread_ctrl(); // copy data memcpy(data, vm::get_ptr(addr), size); } bool reservation_update(u32 addr, const void* data, u32 size) { std::lock_guard lock(g_reservation_mutex); assert(size == 1 || size == 2 || size == 4 || size == 8 || size == 128); assert((addr + size - 1 & ~0xfff) == (addr & ~0xfff)); if (g_reservation_owner != get_current_thread_ctrl() || g_reservation_addr != addr || g_reservation_size != size) { // atomic update failed return false; } // change memory protection to no access _reservation_set(addr, true); // update memory using privileged access memcpy(vm::priv_ptr(addr), data, size); // free the reservation and restore memory protection _reservation_break(addr); // atomic update succeeded return true; } bool reservation_query(u32 addr, u32 size, bool is_writing, std::function callback) { std::lock_guard lock(g_reservation_mutex); if (!check_addr(addr)) { return false; } // check if current reservation and address may overlap if (g_reservation_addr >> 12 == addr >> 12 && is_writing) { if (size && addr + size - 1 >= g_reservation_addr && g_reservation_addr + g_reservation_size - 1 >= addr) { // break the reservation if overlap _reservation_break(addr); } else { return callback(); //? true : _reservation_break(addr), true; } } return true; } void reservation_free() { if (g_reservation_owner && g_reservation_owner == get_current_thread_ctrl()) { std::lock_guard lock(g_reservation_mutex); _reservation_break(g_reservation_addr); } } void reservation_op(u32 addr, u32 size, std::function proc) { std::lock_guard lock(g_reservation_mutex); assert(size == 1 || size == 2 || size == 4 || size == 8 || size == 128); assert((addr + size - 1 & ~0xfff) == (addr & ~0xfff)); // break previous reservation if (g_reservation_owner != get_current_thread_ctrl() || g_reservation_addr != addr || g_reservation_size != size) { if (g_reservation_owner) { _reservation_break(g_reservation_addr); } } // change memory protection to no access _reservation_set(addr, true); // set additional information g_reservation_addr = addr; g_reservation_size = size; g_reservation_owner = get_current_thread_ctrl(); // may not be necessary _mm_mfence(); // do the operation proc(); // remove the reservation _reservation_break(addr); } void _page_map(u32 addr, u32 size, u8 flags) { assert(size && (size | addr) % 4096 == 0 && flags < page_allocated); for (u32 i = addr / 4096; i < addr / 4096 + size / 4096; i++) { if (g_pages[i].load()) { throw EXCEPTION("Memory already mapped (addr=0x%x, size=0x%x, flags=0x%x, current_addr=0x%x)", addr, size, flags, i * 4096); } } void* real_addr = vm::get_ptr(addr); void* priv_addr = vm::priv_ptr(addr); #ifdef _WIN32 auto protection = flags & page_writable ? PAGE_READWRITE : (flags & page_readable ? PAGE_READONLY : PAGE_NOACCESS); if (!VirtualAlloc(priv_addr, size, MEM_COMMIT, PAGE_READWRITE) || !VirtualAlloc(real_addr, size, MEM_COMMIT, protection)) #else auto protection = flags & page_writable ? PROT_WRITE | PROT_READ : (flags & page_readable ? PROT_READ : PROT_NONE); if (mprotect(priv_addr, size, PROT_READ | PROT_WRITE) || mprotect(real_addr, size, protection)) #endif { throw EXCEPTION("System failure (addr=0x%x, size=0x%x, flags=0x%x)", addr, size, flags); } for (u32 i = addr / 4096; i < addr / 4096 + size / 4096; i++) { if (g_pages[i].exchange(flags | page_allocated)) { throw EXCEPTION("Concurrent access (addr=0x%x, size=0x%x, flags=0x%x, current_addr=0x%x)", addr, size, flags, i * 4096); } } memset(priv_addr, 0, size); // ??? } bool page_protect(u32 addr, u32 size, u8 flags_test, u8 flags_set, u8 flags_clear) { std::lock_guard lock(g_reservation_mutex); u8 flags_inv = flags_set & flags_clear; assert(size && (size | addr) % 4096 == 0); flags_test |= page_allocated; for (u32 i = addr / 4096; i < addr / 4096 + size / 4096; i++) { if ((g_pages[i].load() & flags_test) != (flags_test | page_allocated)) { return false; } } if (!flags_inv && !flags_set && !flags_clear) { return true; } for (u32 i = addr / 4096; i < addr / 4096 + size / 4096; i++) { _reservation_break(i * 4096); const u8 f1 = g_pages[i]._or(flags_set & ~flags_inv) & (page_writable | page_readable); g_pages[i]._and_not(flags_clear & ~flags_inv); const u8 f2 = (g_pages[i] ^= flags_inv) & (page_writable | page_readable); if (f1 != f2) { void* real_addr = vm::get_ptr(i * 4096); #ifdef _WIN32 DWORD old; auto protection = f2 & page_writable ? PAGE_READWRITE : (f2 & page_readable ? PAGE_READONLY : PAGE_NOACCESS); if (!VirtualProtect(real_addr, 4096, protection, &old)) #else auto protection = f2 & page_writable ? PROT_WRITE | PROT_READ : (f2 & page_readable ? PROT_READ : PROT_NONE); if (mprotect(real_addr, 4096, protection)) #endif { throw EXCEPTION("System failure (addr=0x%x, size=0x%x, flags_test=0x%x, flags_set=0x%x, flags_clear=0x%x)", addr, size, flags_test, flags_set, flags_clear); } } } return true; } void page_unmap(u32 addr, u32 size) { std::lock_guard lock(g_reservation_mutex); assert(size && (size | addr) % 4096 == 0); for (u32 i = addr / 4096; i < addr / 4096 + size / 4096; i++) { if (!(g_pages[i].load() & page_allocated)) { throw EXCEPTION("Memory not mapped (addr=0x%x, size=0x%x, current_addr=0x%x)", addr, size, i * 4096); } } for (u32 i = addr / 4096; i < addr / 4096 + size / 4096; i++) { _reservation_break(i * 4096); if (!(g_pages[i].exchange(0) & page_allocated)) { throw EXCEPTION("Concurrent access (addr=0x%x, size=0x%x, current_addr=0x%x)", addr, size, i * 4096); } } void* real_addr = vm::get_ptr(addr); void* priv_addr = vm::priv_ptr(addr); #ifdef _WIN32 DWORD old; if (!VirtualProtect(real_addr, size, PAGE_NOACCESS, &old) || !VirtualProtect(priv_addr, size, PAGE_NOACCESS, &old)) #else if (mprotect(real_addr, size, PROT_NONE) || mprotect(priv_addr, size, PROT_NONE)) #endif { throw EXCEPTION("System failure (addr=0x%x, size=0x%x)", addr, size); } } bool check_addr(u32 addr, u32 size) { assert(size); if (addr + (size - 1) < addr) { return false; } for (u32 i = addr / 4096; i <= (addr + size - 1) / 4096; i++) { if ((g_pages[i].load() & page_allocated) != page_allocated) { return false; } } return true; } std::vector> g_locations; u32 alloc(u32 size, memory_location_t location, u32 align) { const auto block = get(location); if (!block) { throw EXCEPTION("Invalid memory location (%d)", location); } return block->alloc(size, align); } u32 falloc(u32 addr, u32 size, memory_location_t location) { const auto block = get(location, addr); if (!block) { throw EXCEPTION("Invalid memory location (%d, addr=0x%x)", location, addr); } return block->falloc(addr, size); } bool dealloc(u32 addr, memory_location_t location) { const auto block = get(location, addr); if (!block) { throw EXCEPTION("Invalid memory location (%d, addr=0x%x)", location, addr); } return block->dealloc(addr); } bool block_t::try_alloc(u32 addr, u32 size) { // check if memory area is already mapped for (u32 i = addr / 4096; i <= (addr + size - 1) / 4096; i++) { if (g_pages[i].load()) { return false; } } // try to reserve "physical" memory if (!used.atomic_op([=](u32& used) -> bool { if (used > this->size) { throw EXCEPTION("Unexpected memory amount used (0x%x)", used); } if (used + size > this->size) { return false; } used += size; return true; })) { return false; } // map memory pages _page_map(addr, size, page_readable | page_writable); // add entry m_map[addr] = size; return true; } block_t::~block_t() { // deallocate all memory for (auto& entry : m_map) { // unmap memory pages vm::page_unmap(entry.first, entry.second); } } u32 block_t::alloc(u32 size, u32 align) { std::lock_guard lock(m_mutex); // align to minimal page size size = ::align(size, 4096); // check alignment (it's page allocation, so passing small values there is just silly) if (align < 4096 || align != (0x80000000u >> cntlz32(align))) { throw EXCEPTION("Invalid alignment (size=0x%x, align=0x%x)", size, align); } // return if size is invalid if (!size || size > this->size) { return false; } // search for an appropriate place (unoptimized) for (u32 addr = ::align(this->addr, align); addr < this->addr + this->size - 1; addr += align) { if (try_alloc(addr, size)) { return addr; } } return false; } u32 block_t::falloc(u32 addr, u32 size) { std::lock_guard lock(m_mutex); // align to minimal page size size = ::align(size, 4096); // return if addr or size is invalid if (!size || size > this->size || addr < this->addr || addr + size - 1 >= this->addr + this->size - 1) { return false; } if (!try_alloc(addr, size)) { return false; } return addr; } bool block_t::dealloc(u32 addr) { std::lock_guard lock(m_mutex); const auto found = m_map.find(addr); if (found != m_map.end()) { const u32 size = found->second; // unmap memory pages vm::page_unmap(addr, size); // remove entry m_map.erase(found); // return "physical" memory used -= size; return true; } return false; } std::shared_ptr map(u32 addr, u32 size, u32 flags) { std::lock_guard lock(g_reservation_mutex); if (!size || (size | addr) % 4096 || flags) { throw EXCEPTION("Invalid arguments (addr=0x%x, size=0x%x, flags=0x%x)", addr, size, flags); } for (auto& block : g_locations) { if (block->addr >= addr && block->addr <= addr + size - 1) { return nullptr; } if (addr >= block->addr && addr <= block->addr + block->size - 1) { return nullptr; } } for (u32 i = addr / 4096; i < addr / 4096 + size / 4096; i++) { if (g_pages[i].load()) { throw EXCEPTION("Unexpected memory usage"); } } auto block = std::make_shared(addr, size); g_locations.emplace_back(block); return block; } std::shared_ptr unmap(u32 addr) { std::lock_guard lock(g_reservation_mutex); for (auto it = g_locations.begin(); it != g_locations.end(); it++) { if (*it && (*it)->addr == addr) { auto block = std::move(*it); g_locations.erase(it); return block; } } return nullptr; } std::shared_ptr get(memory_location_t location, u32 addr) { std::lock_guard lock(g_reservation_mutex); if (location != any) { // return selected location if (location < g_locations.size()) { return g_locations[location]; } return nullptr; } // search location by address for (auto& block : g_locations) { if (addr >= block->addr && addr <= block->addr + block->size - 1) { return block; } } return nullptr; } namespace ps3 { void init() { g_locations = { std::make_shared(0x00010000, 0x1FFF0000), // main std::make_shared(0x20000000, 0x10000000), // user std::make_shared(0xC0000000, 0x10000000), // video std::make_shared(0xD0000000, 0x10000000), // stack std::make_shared(0xE0000000, 0x20000000), // RawSPU }; } } namespace psv { void init() { g_locations = { std::make_shared(0x81000000, 0x10000000), // RAM std::make_shared(0x91000000, 0x2F000000), // user nullptr, // video nullptr, // stack }; } } namespace psp { void init() { g_locations = { std::make_shared(0x08000000, 0x02000000), // RAM std::make_shared(0x08800000, 0x01800000), // user std::make_shared(0x04000000, 0x00200000), // VRAM nullptr, // stack std::make_shared(0x00010000, 0x00004000), // scratchpad std::make_shared(0x88000000, 0x00800000), // kernel }; } } void close() { g_locations.clear(); } u32 stack_push(CPUThread& CPU, u32 size, u32 align_v, u32& old_pos) { switch (CPU.GetType()) { case CPU_THREAD_PPU: { PPUThread& context = static_cast(CPU); old_pos = VM_CAST(context.GPR[1]); context.GPR[1] -= align(size, 8); // room minimal possible size context.GPR[1] &= ~(align_v - 1); // fix stack alignment if (context.GPR[1] < context.stack_addr) { throw EXCEPTION("Stack overflow (size=0x%x, align=0x%x, SP=0x%llx, stack=*0x%x)", size, align_v, old_pos, context.stack_addr); } else { return static_cast(context.GPR[1]); } } case CPU_THREAD_SPU: case CPU_THREAD_RAW_SPU: { SPUThread& context = static_cast(CPU); old_pos = context.GPR[1]._u32[3]; context.GPR[1]._u32[3] -= align(size, 16); context.GPR[1]._u32[3] &= ~(align_v - 1); if (context.GPR[1]._u32[3] >= 0x40000) // extremely rough { throw EXCEPTION("Stack overflow (size=0x%x, align=0x%x, SP=LS:0x%05x)", size, align_v, old_pos); } else { return context.GPR[1]._u32[3] + context.offset; } } case CPU_THREAD_ARMv7: { ARMv7Context& context = static_cast(CPU); old_pos = context.SP; context.SP -= align(size, 4); // room minimal possible size context.SP &= ~(align_v - 1); // fix stack alignment if (context.SP < context.stack_addr) { throw EXCEPTION("Stack overflow (size=0x%x, align=0x%x, SP=0x%x, stack=*0x%x)", size, align_v, context.SP, context.stack_addr); } else { return context.SP; } } default: { throw EXCEPTION("Invalid thread type (%d)", CPU.GetId()); } } } void stack_pop(CPUThread& CPU, u32 addr, u32 old_pos) { switch (CPU.GetType()) { case CPU_THREAD_PPU: { PPUThread& context = static_cast(CPU); if (context.GPR[1] != addr) { throw EXCEPTION("Stack inconsistency (addr=0x%x, SP=0x%llx, old_pos=0x%x)", addr, context.GPR[1], old_pos); } context.GPR[1] = old_pos; return; } case CPU_THREAD_SPU: case CPU_THREAD_RAW_SPU: { SPUThread& context = static_cast(CPU); if (context.GPR[1]._u32[3] + context.offset != addr) { throw EXCEPTION("Stack inconsistency (addr=0x%x, SP=LS:0x%05x, old_pos=LS:0x%05x)", addr, context.GPR[1]._u32[3], old_pos); } context.GPR[1]._u32[3] = old_pos; return; } case CPU_THREAD_ARMv7: { ARMv7Context& context = static_cast(CPU); if (context.SP != addr) { throw EXCEPTION("Stack inconsistency (addr=0x%x, SP=0x%x, old_pos=0x%x)", addr, context.SP, old_pos); } context.SP = old_pos; return; } default: { throw EXCEPTION("Invalid thread type (%d)", CPU.GetType()); } } } }