#include "stdafx.h" #include "sys_semaphore.h" #include "Emu/IdManager.h" #include "Emu/IPC.h" #include "Emu/Cell/ErrorCodes.h" #include "Emu/Cell/PPUThread.h" LOG_CHANNEL(sys_semaphore); lv2_sema::lv2_sema(utils::serial& ar) : protocol(ar) , key(ar) , name(ar) , max(ar) { ar(val); } std::shared_ptr lv2_sema::load(utils::serial& ar) { auto sema = std::make_shared(ar); return lv2_obj::load(sema->key, sema); } void lv2_sema::save(utils::serial& ar) { USING_SERIALIZATION_VERSION(lv2_sync); ar(protocol, key, name, max, std::max(+val, 0)); } error_code sys_semaphore_create(ppu_thread& ppu, vm::ptr sem_id, vm::ptr attr, s32 initial_val, s32 max_val) { ppu.state += cpu_flag::wait; sys_semaphore.warning("sys_semaphore_create(sem_id=*0x%x, attr=*0x%x, initial_val=%d, max_val=%d)", sem_id, attr, initial_val, max_val); if (!sem_id || !attr) { return CELL_EFAULT; } if (max_val <= 0 || initial_val > max_val || initial_val < 0) { sys_semaphore.error("sys_semaphore_create(): invalid parameters (initial_val=%d, max_val=%d)", initial_val, max_val); return CELL_EINVAL; } const auto _attr = *attr; const u32 protocol = _attr.protocol; if (protocol != SYS_SYNC_FIFO && protocol != SYS_SYNC_PRIORITY) { sys_semaphore.error("sys_semaphore_create(): unknown protocol (0x%x)", protocol); return CELL_EINVAL; } const u64 ipc_key = lv2_obj::get_key(_attr); if (auto error = lv2_obj::create(_attr.pshared, ipc_key, _attr.flags, [&] { return std::make_shared(protocol, ipc_key, _attr.name_u64, max_val, initial_val); })) { return error; } static_cast(ppu.test_stopped()); *sem_id = idm::last_id(); return CELL_OK; } error_code sys_semaphore_destroy(ppu_thread& ppu, u32 sem_id) { ppu.state += cpu_flag::wait; sys_semaphore.warning("sys_semaphore_destroy(sem_id=0x%x)", sem_id); const auto sem = idm::withdraw(sem_id, [](lv2_sema& sema) -> CellError { if (sema.val < 0) { return CELL_EBUSY; } lv2_obj::on_id_destroy(sema, sema.key); return {}; }); if (!sem) { return CELL_ESRCH; } if (sem.ret) { return sem.ret; } return CELL_OK; } error_code sys_semaphore_wait(ppu_thread& ppu, u32 sem_id, u64 timeout) { ppu.state += cpu_flag::wait; sys_semaphore.trace("sys_semaphore_wait(sem_id=0x%x, timeout=0x%llx)", sem_id, timeout); const auto sem = idm::get(sem_id, [&](lv2_sema& sema) { const s32 val = sema.val; if (val > 0) { if (sema.val.compare_and_swap_test(val, val - 1)) { return true; } } lv2_obj::notify_all_t notify; std::lock_guard lock(sema.mutex); if (sema.val-- <= 0) { sema.sq.emplace_back(&ppu); sema.sleep(ppu, timeout, true); return false; } return true; }); if (!sem) { return CELL_ESRCH; } if (sem.ret) { return CELL_OK; } ppu.gpr[3] = CELL_OK; while (auto state = +ppu.state) { if (state & cpu_flag::signal && ppu.state.test_and_reset(cpu_flag::signal)) { break; } if (is_stopped(state)) { std::lock_guard lock(sem->mutex); if (std::find(sem->sq.begin(), sem->sq.end(), &ppu) == sem->sq.end()) { break; } ppu.state += cpu_flag::again; return {}; } if (timeout) { if (lv2_obj::wait_timeout(timeout, &ppu)) { // Wait for rescheduling if (ppu.check_state()) { continue; } std::lock_guard lock(sem->mutex); if (!sem->unqueue(sem->sq, &ppu)) { break; } ensure(0 > sem->val.fetch_op([](s32& val) { if (val < 0) { val++; } })); ppu.gpr[3] = CELL_ETIMEDOUT; break; } } else { thread_ctrl::wait_on(ppu.state, state); } } return not_an_error(ppu.gpr[3]); } error_code sys_semaphore_trywait(ppu_thread& ppu, u32 sem_id) { ppu.state += cpu_flag::wait; sys_semaphore.trace("sys_semaphore_trywait(sem_id=0x%x)", sem_id); const auto sem = idm::check(sem_id, [&](lv2_sema& sema) { return sema.val.try_dec(0); }); if (!sem) { return CELL_ESRCH; } if (!sem.ret) { return not_an_error(CELL_EBUSY); } return CELL_OK; } error_code sys_semaphore_post(ppu_thread& ppu, u32 sem_id, s32 count) { ppu.state += cpu_flag::wait; sys_semaphore.trace("sys_semaphore_post(sem_id=0x%x, count=%d)", sem_id, count); const auto sem = idm::get(sem_id, [&](lv2_sema& sema) { const s32 val = sema.val; if (val >= 0 && count > 0 && count <= sema.max - val) { if (sema.val.compare_and_swap_test(val, val + count)) { return true; } } return false; }); if (!sem) { return CELL_ESRCH; } if (count <= 0) { return CELL_EINVAL; } if (sem.ret) { return CELL_OK; } else { std::lock_guard lock(sem->mutex); for (auto cpu : sem->sq) { if (static_cast(cpu)->state & cpu_flag::again) { ppu.state += cpu_flag::again; return {}; } } const auto [val, ok] = sem->val.fetch_op([&](s32& val) { if (count + 0u <= sem->max + 0u - val) { val += count; return true; } return false; }); if (!ok) { return not_an_error(CELL_EBUSY); } // Wake threads const s32 to_awake = std::min(-std::min(val, 0), count); for (s32 i = 0; i < to_awake; i++) { sem->append((ensure(sem->schedule(sem->sq, sem->protocol)))); } if (to_awake > 0) { lv2_obj::awake_all(); } } return CELL_OK; } error_code sys_semaphore_get_value(ppu_thread& ppu, u32 sem_id, vm::ptr count) { ppu.state += cpu_flag::wait; sys_semaphore.trace("sys_semaphore_get_value(sem_id=0x%x, count=*0x%x)", sem_id, count); const auto sema = idm::check(sem_id, [](lv2_sema& sema) { return std::max(0, sema.val); }); if (!sema) { return CELL_ESRCH; } if (!count) { return CELL_EFAULT; } static_cast(ppu.test_stopped()); *count = sema.ret; return CELL_OK; }