#include "stdafx.h" #include "Memory.h" #include "Emu/CPU/CPUThread.h" #include "Emu/Cell/PPUThread.h" #include "Emu/ARMv7/ARMv7Thread.h" namespace vm { #ifdef _WIN32 #include void* const g_base_addr = VirtualAlloc(nullptr, 0x100000000, MEM_RESERVE, PAGE_NOACCESS); #else #include /* OS X uses MAP_ANON instead of MAP_ANONYMOUS */ #ifndef MAP_ANONYMOUS #define MAP_ANONYMOUS MAP_ANON #endif void* const g_base_addr = mmap(nullptr, 0x100000000, PROT_NONE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0); #endif bool check_addr(u32 addr) { // Checking address before using it is unsafe. // The only safe way to check it is to protect both actions (checking and using) with mutex that is used for mapping/allocation. return false; } //TODO bool map(u32 addr, u32 size, u32 flags) { return Memory.Map(addr, size); } bool unmap(u32 addr, u32 size, u32 flags) { return Memory.Unmap(addr); } u32 alloc(u32 addr, u32 size, memory_location location) { return g_locations[location].fixed_allocator(addr, size); } u32 alloc(u32 size, memory_location location) { return g_locations[location].allocator(size); } void dealloc(u32 addr, memory_location location) { return g_locations[location].deallocator(addr); } u32 get_addr(const void* real_pointer) { const u64 diff = (u64)real_pointer - (u64)g_base_addr; const u32 res = (u32)diff; if (res == diff) { return res; } assert(!real_pointer); return 0; } void error(const u64 addr, const char* func) { throw fmt::format("%s(): failed to cast 0x%llx (too big value)", func, addr); } namespace ps3 { u32 main_alloc(u32 size) { return Memory.MainMem.AllocAlign(size, 1); } u32 main_fixed_alloc(u32 addr, u32 size) { return Memory.MainMem.AllocFixed(addr, size) ? addr : 0; } void main_dealloc(u32 addr) { Memory.MainMem.Free(addr); } u32 g_stack_offset = 0; u32 stack_alloc(u32 size) { return Memory.StackMem.AllocAlign(size, 0x10); } u32 stack_fixed_alloc(u32 addr, u32 size) { return Memory.StackMem.AllocFixed(addr, size) ? addr : 0; } void stack_dealloc(u32 addr) { Memory.StackMem.Free(addr); } u32 sprx_alloc(u32 size) { return Memory.SPRXMem.AllocAlign(size, 1); } u32 sprx_fixed_alloc(u32 addr, u32 size) { return Memory.SPRXMem.AllocFixed(Memory.SPRXMem.GetStartAddr() + addr, size) ? Memory.SPRXMem.GetStartAddr() + addr : 0; } void sprx_dealloc(u32 addr) { Memory.SPRXMem.Free(addr); } u32 user_space_alloc(u32 size) { return Memory.PRXMem.AllocAlign(size, 1); } u32 user_space_fixed_alloc(u32 addr, u32 size) { return Memory.PRXMem.AllocFixed(addr, size) ? addr : 0; } void user_space_dealloc(u32 addr) { Memory.PRXMem.Free(addr); } void init() { Memory.Init(Memory_PS3); } } namespace psv { void init() { Memory.Init(Memory_PSV); } } namespace psp { void init() { Memory.Init(Memory_PSP); } } location_info g_locations[memory_location_count] = { { 0x00010000, 0x2FFF0000, ps3::main_alloc, ps3::main_fixed_alloc, ps3::main_dealloc }, { 0xD0000000, 0x10000000, ps3::stack_alloc, ps3::stack_fixed_alloc, ps3::stack_dealloc }, //remove me { 0x00010000, 0x2FFF0000, ps3::sprx_alloc, ps3::sprx_fixed_alloc, ps3::sprx_dealloc }, { 0x30000000, 0x10000000, ps3::user_space_alloc, ps3::user_space_fixed_alloc, ps3::user_space_dealloc }, }; void close() { Memory.Close(); } u32 stack_push(CPUThread& CPU, u32 size, u32 align_v, u32& old_pos) { assert(align_v); switch (CPU.GetType()) { case CPU_THREAD_PPU: { PPUThread& PPU = static_cast(CPU); old_pos = (u32)PPU.GPR[1]; PPU.GPR[1] -= align(size, 8); // room minimal possible size PPU.GPR[1] &= ~(align_v - 1); // fix stack alignment if (PPU.GPR[1] < CPU.GetStackAddr()) { // stack overflow PPU.GPR[1] = old_pos; return 0; } else { return (u32)PPU.GPR[1]; } } case CPU_THREAD_SPU: case CPU_THREAD_RAW_SPU: { assert(!"stack_push(): SPU not supported"); return 0; } case CPU_THREAD_ARMv7: { ARMv7Context& context = static_cast(CPU).context; old_pos = context.SP; context.SP -= align(size, 4); // room minimal possible size context.SP &= ~(align_v - 1); // fix stack alignment if (context.SP < CPU.GetStackAddr()) { // stack overflow context.SP = old_pos; return 0; } else { return context.SP; } } default: { assert(!"stack_push(): invalid thread type"); return 0; } } } void stack_pop(CPUThread& CPU, u32 addr, u32 old_pos) { switch (CPU.GetType()) { case CPU_THREAD_PPU: { PPUThread& PPU = static_cast(CPU); assert(PPU.GPR[1] == addr); PPU.GPR[1] = old_pos; return; } case CPU_THREAD_SPU: case CPU_THREAD_RAW_SPU: { assert(!"stack_pop(): SPU not supported"); return; } case CPU_THREAD_ARMv7: { ARMv7Context& context = static_cast(CPU).context; assert(context.SP == addr); context.SP = old_pos; return; } default: { assert(!"stack_pop(): invalid thread type"); return; } } } }