#include "stdafx.h" #include "BufferUtils.h" #include "../rsx_methods.h" #include "../RSXThread.h" #include "util/to_endian.hpp" #include "util/sysinfo.hpp" #include "Utilities/JIT.h" #include "util/asm.hpp" #if defined(ARCH_X64) #include "emmintrin.h" #include "immintrin.h" #endif #if !defined(_MSC_VER) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wold-style-cast" #endif #ifdef ARCH_ARM64 #if !defined(_MSC_VER) #pragma GCC diagnostic ignored "-Wstrict-aliasing" #endif #undef FORCE_INLINE #include "Emu/CPU/sse2neon.h" #endif #if defined(_MSC_VER) || !defined(__SSE2__) #define PLAIN_FUNC #define SSSE3_FUNC #define SSE4_1_FUNC #define AVX2_FUNC #define AVX3_FUNC #else #ifndef __clang__ #define PLAIN_FUNC __attribute__((optimize("no-tree-vectorize"))) #define SSSE3_FUNC __attribute__((__target__("ssse3"))) __attribute__((optimize("tree-vectorize"))) #else #define PLAIN_FUNC #define SSSE3_FUNC __attribute__((__target__("ssse3"))) #endif #define SSE4_1_FUNC __attribute__((__target__("sse4.1"))) #define AVX2_FUNC __attribute__((__target__("avx2"))) #define AVX3_FUNC __attribute__((__target__("avx512f,avx512bw,avx512dq,avx512cd,avx512vl"))) #ifndef __AVX2__ using __m256i = long long __attribute__((vector_size(32))); #endif #endif // _MSC_VER SSE4_1_FUNC static inline u16 sse41_hmin_epu16(__m128i x) { return _mm_cvtsi128_si32(_mm_minpos_epu16(x)); } SSE4_1_FUNC static inline u16 sse41_hmax_epu16(__m128i x) { return ~_mm_cvtsi128_si32(_mm_minpos_epu16(_mm_xor_si128(x, _mm_set1_epi32(-1)))); } #if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512CD__) && defined(__AVX512BW__) constexpr bool s_use_ssse3 = true; constexpr bool s_use_sse4_1 = true; constexpr bool s_use_avx2 = true; constexpr bool s_use_avx3 = true; #elif defined(__AVX2__) constexpr bool s_use_ssse3 = true; constexpr bool s_use_sse4_1 = true; constexpr bool s_use_avx2 = true; constexpr bool s_use_avx3 = false; #elif defined(__SSE4_1__) constexpr bool s_use_ssse3 = true; constexpr bool s_use_sse4_1 = true; constexpr bool s_use_avx2 = false; constexpr bool s_use_avx3 = false; #elif defined(__SSSE3__) constexpr bool s_use_ssse3 = true; constexpr bool s_use_sse4_1 = false; constexpr bool s_use_avx2 = false; constexpr bool s_use_avx3 = false; #elif defined(ARCH_X64) const bool s_use_ssse3 = utils::has_ssse3(); const bool s_use_sse4_1 = utils::has_sse41(); const bool s_use_avx2 = utils::has_avx2(); const bool s_use_avx3 = utils::has_avx512(); #else constexpr bool s_use_ssse3 = true; // Non x86 constexpr bool s_use_sse4_1 = true; // Non x86 constexpr bool s_use_avx2 = false; constexpr bool s_use_avx3 = false; #endif const __m128i s_bswap_u32_mask = _mm_set_epi8( 0xC, 0xD, 0xE, 0xF, 0x8, 0x9, 0xA, 0xB, 0x4, 0x5, 0x6, 0x7, 0x0, 0x1, 0x2, 0x3); const __m128i s_bswap_u16_mask = _mm_set_epi8( 0xE, 0xF, 0xC, 0xD, 0xA, 0xB, 0x8, 0x9, 0x6, 0x7, 0x4, 0x5, 0x2, 0x3, 0x0, 0x1); namespace utils { template [[nodiscard]] auto bless(const std::span& span) { return std::span(bless(span.data()), sizeof(U) * span.size() / sizeof(T)); } } namespace { template PLAIN_FUNC auto copy_data_swap_u32_naive(u32* dst, const u32* src, u32 count) { u32 result = 0; #ifdef __clang__ #pragma clang loop vectorize(disable) interleave(disable) unroll(disable) #endif for (u32 i = 0; i < count; i++) { const u32 data = stx::se_storage::swap(src[i]); if constexpr (Compare) { result |= data ^ dst[i]; } dst[i] = data; } if constexpr (Compare) { return static_cast(result); } } template SSSE3_FUNC auto copy_data_swap_u32_ssse3(u32* dst, const u32* src, u32 count) { u32 result = 0; #ifdef __clang__ #pragma clang loop vectorize(enable) interleave(disable) unroll(disable) #endif for (u32 i = 0; i < count; i++) { const u32 data = stx::se_storage::swap(src[i]); if constexpr (Compare) { result |= data ^ dst[i]; } dst[i] = data; } if constexpr (Compare) { return static_cast(result); } } #if defined(ARCH_X64) template void build_copy_data_swap_u32_avx3(asmjit::x86::Assembler& c, std::array& args, const RT& rmask, const RT& rload, const RT& rtest) { using namespace asmjit; Label loop = c.newLabel(); Label tail = c.newLabel(); // Get start alignment offset c.mov(args[3].r32(), args[0].r32()); c.and_(args[3].r32(), Size * 4 - 1); // Load and duplicate shuffle mask c.vbroadcasti32x4(rmask, x86::oword_ptr(uptr(&s_bswap_u32_mask))); if (Compare) c.vpxor(x86::xmm2, x86::xmm2, x86::xmm2); c.or_(x86::eax, -1); // Small data: skip to tail (ignore alignment) c.cmp(args[2].r32(), Size); c.jbe(tail); // Generate mask for first iteration, adjust args using alignment offset c.sub(args[1], args[3]); c.shr(args[3].r32(), 2); c.shlx(x86::eax, x86::eax, args[3].r32()); c.kmovw(x86::k1, x86::eax); c.and_(args[0], -Size * 4); c.add(args[2].r32(), args[3].r32()); c.k(x86::k1).z().vmovdqu32(rload, x86::Mem(args[1], 0, Size * 4u)); c.vpshufb(rload, rload, rmask); if (Compare) c.k(x86::k1).z().vpxord(rtest, rload, x86::Mem(args[0], 0, Size * 4u)); c.k(x86::k1).vmovdqa32(x86::Mem(args[0], 0, Size * 4u), rload); c.lea(args[0], x86::qword_ptr(args[0], Size * 4)); c.lea(args[1], x86::qword_ptr(args[1], Size * 4)); c.sub(args[2].r32(), Size); c.or_(x86::eax, -1); c.align(AlignMode::kCode, 16); c.bind(loop); c.cmp(args[2].r32(), Size); c.jbe(tail); c.vmovdqu32(rload, x86::Mem(args[1], 0, Size * 4u)); c.vpshufb(rload, rload, rmask); if (Compare) c.vpternlogd(rtest, rload, x86::Mem(args[0], 0, Size * 4u), 0xf6); // orAxorBC c.vmovdqa32(x86::Mem(args[0], 0, Size * 4u), rload); c.lea(args[0], x86::qword_ptr(args[0], Size * 4)); c.lea(args[1], x86::qword_ptr(args[1], Size * 4)); c.sub(args[2].r32(), Size); c.jmp(loop); c.bind(tail); c.bzhi(x86::eax, x86::eax, args[2].r32()); c.kmovw(x86::k1, x86::eax); c.k(x86::k1).z().vmovdqu32(rload, x86::Mem(args[1], 0, Size * 4u)); c.vpshufb(rload, rload, rmask); if (Compare) c.k(x86::k1).vpternlogd(rtest, rload, x86::Mem(args[0], 0, Size * 4u), 0xf6); c.k(x86::k1).vmovdqu32(x86::Mem(args[0], 0, Size * 4u), rload); if (Compare) { if constexpr (Size != 16) { c.vptest(rtest, rtest); } else { c.vptestmd(x86::k1, rtest, rtest); c.ktestw(x86::k1, x86::k1); } c.setnz(x86::al); } #ifndef __AVX__ c.vzeroupper(); #endif c.ret(); } template void build_copy_data_swap_u32(native_asm& c, native_args& args) { using namespace asmjit; if (utils::has_avx512()) { if (utils::has_avx512_icl()) { build_copy_data_swap_u32_avx3(c, args, x86::zmm0, x86::zmm1, x86::zmm2); return; } build_copy_data_swap_u32_avx3(c, args, x86::ymm0, x86::ymm1, x86::ymm2); return; } if (utils::has_ssse3()) { c.jmp(©_data_swap_u32_ssse3); return; } c.jmp(©_data_swap_u32_naive); } #elif defined(ARCH_ARM64) template void build_copy_data_swap_u32(native_asm& c, native_args& args) { c.b(©_data_swap_u32_naive); } #endif } DECLARE(copy_data_swap_u32) = build_function_asm("copy_data_swap_u32", &build_copy_data_swap_u32); DECLARE(copy_data_swap_u32_cmp) = build_function_asm("copy_data_swap_u32_cmp", &build_copy_data_swap_u32); namespace { template constexpr T index_limit() { return -1; } template const T& min_max(T& min, T& max, const T& value) { if (value < min) min = value; if (value > max) max = value; return value; } struct untouched_impl { SSE4_1_FUNC static std::tuple upload_u16_swapped_sse4_1(const void *src, void *dst, u32 count) { auto src_stream = static_cast(src); auto dst_stream = static_cast<__m128i*>(dst); __m128i min = _mm_set1_epi16(-1); __m128i max = _mm_set1_epi16(0); const auto iterations = count / 8; for (unsigned n = 0; n < iterations; ++n) { const __m128i raw = _mm_loadu_si128(src_stream++); const __m128i value = _mm_shuffle_epi8(raw, s_bswap_u16_mask); max = _mm_max_epu16(max, value); min = _mm_min_epu16(min, value); _mm_store_si128(dst_stream++, value); } const u16 min_index = sse41_hmin_epu16(min); const u16 max_index = sse41_hmax_epu16(max); return std::make_tuple(min_index, max_index, count); } SSE4_1_FUNC static std::tuple upload_u32_swapped_sse4_1(const void *src, void *dst, u32 count) { auto src_stream = static_cast(src); auto dst_stream = static_cast<__m128i*>(dst); __m128i min = _mm_set1_epi32(~0u); __m128i max = _mm_set1_epi32(0); const auto iterations = count / 4; for (unsigned n = 0; n < iterations; ++n) { const __m128i raw = _mm_loadu_si128(src_stream++); const __m128i value = _mm_shuffle_epi8(raw, s_bswap_u32_mask); max = _mm_max_epu32(max, value); min = _mm_min_epu32(min, value); _mm_store_si128(dst_stream++, value); } __m128i tmp = _mm_srli_si128(min, 8); min = _mm_min_epu32(min, tmp); tmp = _mm_srli_si128(min, 4); min = _mm_min_epu32(min, tmp); tmp = _mm_srli_si128(max, 8); max = _mm_max_epu32(max, tmp); tmp = _mm_srli_si128(max, 4); max = _mm_max_epu32(max, tmp); const u32 min_index = _mm_cvtsi128_si32(min); const u32 max_index = _mm_cvtsi128_si32(max); return std::make_tuple(min_index, max_index, count); } template static std::tuple upload_untouched(std::span> src, std::span dst) { T min_index, max_index; u32 written; u32 remaining = ::size32(src); if (s_use_sse4_1 && remaining >= 32) { if constexpr (std::is_same::value) { const auto count = (remaining & ~0x3); std::tie(min_index, max_index, written) = upload_u32_swapped_sse4_1(src.data(), dst.data(), count); } else if constexpr (std::is_same::value) { const auto count = (remaining & ~0x7); std::tie(min_index, max_index, written) = upload_u16_swapped_sse4_1(src.data(), dst.data(), count); } else { fmt::throw_exception("Unreachable"); } remaining -= written; } else { min_index = index_limit(); max_index = 0; written = 0; } while (remaining--) { T index = src[written]; dst[written++] = min_max(min_index, max_index, index); } return std::make_tuple(min_index, max_index, written); } }; struct primitive_restart_impl { #if defined(ARCH_X64) AVX2_FUNC static std::tuple upload_u16_swapped_avx2(const void *src, void *dst, u32 iterations, u16 restart_index) { const __m256i shuffle_mask = _mm256_set_m128i(s_bswap_u16_mask, s_bswap_u16_mask); auto src_stream = static_cast(src); auto dst_stream = static_cast<__m256i*>(dst); __m256i restart = _mm256_set1_epi16(restart_index); __m256i min = _mm256_set1_epi16(-1); __m256i max = _mm256_set1_epi16(0); for (unsigned n = 0; n < iterations; ++n) { const __m256i raw = _mm256_loadu_si256(src_stream++); const __m256i value = _mm256_shuffle_epi8(raw, shuffle_mask); const __m256i mask = _mm256_cmpeq_epi16(restart, value); const __m256i value_with_min_restart = _mm256_andnot_si256(mask, value); const __m256i value_with_max_restart = _mm256_or_si256(mask, value); max = _mm256_max_epu16(max, value_with_min_restart); min = _mm256_min_epu16(min, value_with_max_restart); _mm256_store_si256(dst_stream++, value_with_max_restart); } __m128i tmp = _mm256_extracti128_si256(min, 1); __m128i min2 = _mm256_castsi256_si128(min); min2 = _mm_min_epu16(min2, tmp); tmp = _mm256_extracti128_si256(max, 1); __m128i max2 = _mm256_castsi256_si128(max); max2 = _mm_max_epu16(max2, tmp); const u16 min_index = sse41_hmin_epu16(min2); const u16 max_index = sse41_hmax_epu16(max2); return std::make_tuple(min_index, max_index); } #endif SSE4_1_FUNC static std::tuple upload_u16_swapped_sse4_1(const void *src, void *dst, u32 iterations, u16 restart_index) { auto src_stream = static_cast(src); auto dst_stream = static_cast<__m128i*>(dst); __m128i restart = _mm_set1_epi16(restart_index); __m128i min = _mm_set1_epi16(-1); __m128i max = _mm_set1_epi16(0); for (unsigned n = 0; n < iterations; ++n) { const __m128i raw = _mm_loadu_si128(src_stream++); const __m128i value = _mm_shuffle_epi8(raw, s_bswap_u16_mask); const __m128i mask = _mm_cmpeq_epi16(restart, value); const __m128i value_with_min_restart = _mm_andnot_si128(mask, value); const __m128i value_with_max_restart = _mm_or_si128(mask, value); max = _mm_max_epu16(max, value_with_min_restart); min = _mm_min_epu16(min, value_with_max_restart); _mm_store_si128(dst_stream++, value_with_max_restart); } const u16 min_index = sse41_hmin_epu16(min); const u16 max_index = sse41_hmax_epu16(max); return std::make_tuple(min_index, max_index); } SSE4_1_FUNC static std::tuple upload_u32_swapped_sse4_1(const void *src, void *dst, u32 iterations, u32 restart_index) { auto src_stream = static_cast(src); auto dst_stream = static_cast<__m128i*>(dst); __m128i restart = _mm_set1_epi32(restart_index); __m128i min = _mm_set1_epi32(0xffffffff); __m128i max = _mm_set1_epi32(0); for (unsigned n = 0; n < iterations; ++n) { const __m128i raw = _mm_loadu_si128(src_stream++); const __m128i value = _mm_shuffle_epi8(raw, s_bswap_u32_mask); const __m128i mask = _mm_cmpeq_epi32(restart, value); const __m128i value_with_min_restart = _mm_andnot_si128(mask, value); const __m128i value_with_max_restart = _mm_or_si128(mask, value); max = _mm_max_epu32(max, value_with_min_restart); min = _mm_min_epu32(min, value_with_max_restart); _mm_store_si128(dst_stream++, value_with_max_restart); } __m128i tmp = _mm_srli_si128(min, 8); min = _mm_min_epu32(min, tmp); tmp = _mm_srli_si128(min, 4); min = _mm_min_epu32(min, tmp); tmp = _mm_srli_si128(max, 8); max = _mm_max_epu32(max, tmp); tmp = _mm_srli_si128(max, 4); max = _mm_max_epu32(max, tmp); const u32 min_index = _mm_cvtsi128_si32(min); const u32 max_index = _mm_cvtsi128_si32(max); return std::make_tuple(min_index, max_index); } template static std::tuple upload_untouched(std::span> src, std::span dst, T restart_index, bool skip_restart) { T min_index = index_limit(); T max_index = 0; u32 written = 0; u32 length = ::size32(src); if (length >= 32 && !skip_restart) { if constexpr (std::is_same::value) { if (s_use_avx2) { #if defined(ARCH_X64) u32 iterations = length >> 4; written = length & ~0xF; std::tie(min_index, max_index) = upload_u16_swapped_avx2(src.data(), dst.data(), iterations, restart_index); #endif } else if (s_use_sse4_1) { u32 iterations = length >> 3; written = length & ~0x7; std::tie(min_index, max_index) = upload_u16_swapped_sse4_1(src.data(), dst.data(), iterations, restart_index); } } else if constexpr (std::is_same::value) { if (s_use_sse4_1) { u32 iterations = length >> 2; written = length & ~0x3; std::tie(min_index, max_index) = upload_u32_swapped_sse4_1(src.data(), dst.data(), iterations, restart_index); } } else { fmt::throw_exception("Unreachable"); } } for (u32 i = written; i < length; ++i) { T index = src[i]; if (index == restart_index) { if (!skip_restart) { dst[written++] = index_limit(); } } else { dst[written++] = min_max(min_index, max_index, index); } } return std::make_tuple(min_index, max_index, written); } }; template std::tuple upload_untouched(std::span> src, std::span dst, rsx::primitive_type draw_mode, bool is_primitive_restart_enabled, u32 primitive_restart_index) { if (!is_primitive_restart_enabled) { return untouched_impl::upload_untouched(src, dst); } else if constexpr (std::is_same::value) { if (primitive_restart_index > 0xffff) { return untouched_impl::upload_untouched(src, dst); } else { return primitive_restart_impl::upload_untouched(src, dst, static_cast(primitive_restart_index), is_primitive_disjointed(draw_mode)); } } else { return primitive_restart_impl::upload_untouched(src, dst, primitive_restart_index, is_primitive_disjointed(draw_mode)); } } template std::tuple expand_indexed_triangle_fan(std::span> src, std::span dst, bool is_primitive_restart_enabled, u32 primitive_restart_index) { const T invalid_index = index_limit(); T min_index = invalid_index; T max_index = 0; ensure((dst.size() >= 3 * (src.size() - 2))); u32 dst_idx = 0; bool needs_anchor = true; T anchor = invalid_index; T last_index = invalid_index; for (const T index : src) { if (needs_anchor) { if (is_primitive_restart_enabled && index == primitive_restart_index) continue; anchor = min_max(min_index, max_index, index); needs_anchor = false; continue; } if (is_primitive_restart_enabled && index == primitive_restart_index) { needs_anchor = true; last_index = invalid_index; continue; } if (last_index == invalid_index) { //Need at least one anchor and one outer index to create a triangle last_index = min_max(min_index, max_index, index); continue; } dst[dst_idx++] = anchor; dst[dst_idx++] = last_index; dst[dst_idx++] = min_max(min_index, max_index, index); last_index = index; } return std::make_tuple(min_index, max_index, dst_idx); } template std::tuple expand_indexed_quads(std::span> src, std::span dst, bool is_primitive_restart_enabled, u32 primitive_restart_index) { T min_index = index_limit(); T max_index = 0; ensure((4 * dst.size_bytes() >= 6 * src.size_bytes())); u32 dst_idx = 0; u8 set_size = 0; T tmp_indices[4]; for (const T index : src) { if (is_primitive_restart_enabled && index == primitive_restart_index) { //empty temp buffer set_size = 0; continue; } tmp_indices[set_size++] = min_max(min_index, max_index, index); if (set_size == 4) { // First triangle dst[dst_idx++] = tmp_indices[0]; dst[dst_idx++] = tmp_indices[1]; dst[dst_idx++] = tmp_indices[2]; // Second triangle dst[dst_idx++] = tmp_indices[2]; dst[dst_idx++] = tmp_indices[3]; dst[dst_idx++] = tmp_indices[0]; set_size = 0; } } return std::make_tuple(min_index, max_index, dst_idx); } } // Only handle quads and triangle fan now bool is_primitive_native(rsx::primitive_type draw_mode) { switch (draw_mode) { case rsx::primitive_type::points: case rsx::primitive_type::lines: case rsx::primitive_type::line_strip: case rsx::primitive_type::triangles: case rsx::primitive_type::triangle_strip: case rsx::primitive_type::quad_strip: return true; case rsx::primitive_type::line_loop: case rsx::primitive_type::polygon: case rsx::primitive_type::triangle_fan: case rsx::primitive_type::quads: return false; case rsx::primitive_type::invalid: break; } fmt::throw_exception("Wrong primitive type"); } bool is_primitive_disjointed(rsx::primitive_type draw_mode) { switch (draw_mode) { case rsx::primitive_type::line_loop: case rsx::primitive_type::line_strip: case rsx::primitive_type::polygon: case rsx::primitive_type::quad_strip: case rsx::primitive_type::triangle_fan: case rsx::primitive_type::triangle_strip: return false; default: return true; } } u32 get_index_count(rsx::primitive_type draw_mode, u32 initial_index_count) { // Index count if (is_primitive_native(draw_mode)) return initial_index_count; switch (draw_mode) { case rsx::primitive_type::line_loop: return initial_index_count + 1; case rsx::primitive_type::polygon: case rsx::primitive_type::triangle_fan: return (initial_index_count - 2) * 3; case rsx::primitive_type::quads: return (6 * initial_index_count) / 4; default: return 0; } } u32 get_index_type_size(rsx::index_array_type type) { switch (type) { case rsx::index_array_type::u16: return sizeof(u16); case rsx::index_array_type::u32: return sizeof(u32); } fmt::throw_exception("Wrong index type"); } void write_index_array_for_non_indexed_non_native_primitive_to_buffer(char* dst, rsx::primitive_type draw_mode, unsigned count) { auto typedDst = reinterpret_cast(dst); switch (draw_mode) { case rsx::primitive_type::line_loop: for (unsigned i = 0; i < count; ++i) typedDst[i] = i; typedDst[count] = 0; return; case rsx::primitive_type::triangle_fan: case rsx::primitive_type::polygon: for (unsigned i = 0; i < (count - 2); i++) { typedDst[3 * i] = 0; typedDst[3 * i + 1] = i + 2 - 1; typedDst[3 * i + 2] = i + 2; } return; case rsx::primitive_type::quads: for (unsigned i = 0; i < count / 4; i++) { // First triangle typedDst[6 * i] = 4 * i; typedDst[6 * i + 1] = 4 * i + 1; typedDst[6 * i + 2] = 4 * i + 2; // Second triangle typedDst[6 * i + 3] = 4 * i + 2; typedDst[6 * i + 4] = 4 * i + 3; typedDst[6 * i + 5] = 4 * i; } return; case rsx::primitive_type::quad_strip: case rsx::primitive_type::points: case rsx::primitive_type::lines: case rsx::primitive_type::line_strip: case rsx::primitive_type::triangles: case rsx::primitive_type::triangle_strip: fmt::throw_exception("Native primitive type doesn't require expansion"); case rsx::primitive_type::invalid: break; } fmt::throw_exception("Tried to load invalid primitive type"); } namespace { template std::tuple write_index_array_data_to_buffer_impl(std::span dst, std::span> src, rsx::primitive_type draw_mode, bool restart_index_enabled, u32 restart_index, const std::function& expands) { if (!expands(draw_mode)) [[likely]] { return upload_untouched(src, dst, draw_mode, restart_index_enabled, restart_index); } switch (draw_mode) { case rsx::primitive_type::line_loop: { const auto &returnvalue = upload_untouched(src, dst, draw_mode, restart_index_enabled, restart_index); const auto index_count = dst.size_bytes() / sizeof(T); dst[index_count] = src[0]; return returnvalue; } case rsx::primitive_type::polygon: case rsx::primitive_type::triangle_fan: { return expand_indexed_triangle_fan(src, dst, restart_index_enabled, restart_index); } case rsx::primitive_type::quads: { return expand_indexed_quads(src, dst, restart_index_enabled, restart_index); } default: fmt::throw_exception("Unknown draw mode (0x%x)", static_cast(draw_mode)); } } } std::tuple write_index_array_data_to_buffer(std::span dst_ptr, std::span src_ptr, rsx::index_array_type type, rsx::primitive_type draw_mode, bool restart_index_enabled, u32 restart_index, const std::function& expands) { switch (type) { case rsx::index_array_type::u16: { return write_index_array_data_to_buffer_impl(utils::bless(dst_ptr), utils::bless>(src_ptr), draw_mode, restart_index_enabled, restart_index, expands); } case rsx::index_array_type::u32: { return write_index_array_data_to_buffer_impl(utils::bless(dst_ptr), utils::bless>(src_ptr), draw_mode, restart_index_enabled, restart_index, expands); } default: fmt::throw_exception("Unreachable"); } } void stream_vector(void *dst, u32 x, u32 y, u32 z, u32 w) { const __m128i vector = _mm_set_epi32(w, z, y, x); _mm_stream_si128(reinterpret_cast<__m128i*>(dst), vector); } void stream_vector(void *dst, f32 x, f32 y, f32 z, f32 w) { stream_vector(dst, std::bit_cast(x), std::bit_cast(y), std::bit_cast(z), std::bit_cast(w)); } void stream_vector_from_memory(void *dst, void *src) { const __m128i vector = _mm_loadu_si128(reinterpret_cast<__m128i*>(src)); _mm_stream_si128(reinterpret_cast<__m128i*>(dst), vector); }