#include "stdafx.h" #include "Emu/Memory/Memory.h" #include "Emu/System.h" #include "Emu/IdManager.h" #include "Emu/SysCalls/SysCalls.h" #include "Emu/Cell/PPUThread.h" #include "Emu/Cell/SPUThread.h" #include "Emu/Event.h" #include "sys_process.h" #include "sys_event.h" SysCallBase sys_event("sys_event"); extern u64 get_system_time(); lv2_event_queue_t::lv2_event_queue_t(u32 protocol, s32 type, u64 name, u64 key, s32 size) : id(Emu.GetIdManager().get_current_id()) , protocol(protocol) , type(type) , name(name) , key(key) , size(size) { } void lv2_event_queue_t::push(lv2_lock_t& lv2_lock, u64 source, u64 data1, u64 data2, u64 data3) { CHECK_LV2_LOCK(lv2_lock); // save event if no waiters if (sq.empty()) { return events.emplace_back(source, data1, data2, data3); } if (events.size()) { throw EXCEPTION("Unexpected"); } // notify waiter; protocol is ignored in current implementation auto& thread = sq.front(); if (type == SYS_PPU_QUEUE && thread->get_type() == CPU_THREAD_PPU) { // store event data in registers auto& ppu = static_cast(*thread); ppu.GPR[4] = source; ppu.GPR[5] = data1; ppu.GPR[6] = data2; ppu.GPR[7] = data3; } else if (type == SYS_SPU_QUEUE && thread->get_type() == CPU_THREAD_SPU) { // store event data in In_MBox auto& spu = static_cast(*thread); spu.ch_in_mbox.set_values(4, CELL_OK, static_cast(data1), static_cast(data2), static_cast(data3)); } else { throw EXCEPTION("Unexpected (queue_type=%d, thread_type=%d)", type, thread->get_type()); } if (!sq.front()->signal()) { throw EXCEPTION("Thread already signaled"); } return sq.pop_front(); } s32 sys_event_queue_create(vm::ptr equeue_id, vm::ptr attr, u64 event_queue_key, s32 size) { sys_event.Warning("sys_event_queue_create(equeue_id=*0x%x, attr=*0x%x, event_queue_key=0x%llx, size=%d)", equeue_id, attr, event_queue_key, size); if (size <= 0 || size > 127) { return CELL_EINVAL; } const u32 protocol = attr->protocol; if (protocol != SYS_SYNC_FIFO && protocol != SYS_SYNC_PRIORITY) { sys_event.Error("sys_event_queue_create(): unknown protocol (0x%x)", protocol); return CELL_EINVAL; } const u32 type = attr->type; if (type != SYS_PPU_QUEUE && type != SYS_SPU_QUEUE) { sys_event.Error("sys_event_queue_create(): unknown type (0x%x)", type); return CELL_EINVAL; } const auto queue = Emu.GetEventManager().MakeEventQueue(event_queue_key, protocol, type, attr->name_u64, event_queue_key, size); if (!queue) { return CELL_EEXIST; } *equeue_id = queue->id; return CELL_OK; } s32 sys_event_queue_destroy(u32 equeue_id, s32 mode) { sys_event.Warning("sys_event_queue_destroy(equeue_id=0x%x, mode=%d)", equeue_id, mode); LV2_LOCK; const auto queue = Emu.GetIdManager().get(equeue_id); if (!queue) { return CELL_ESRCH; } if (mode && mode != SYS_EVENT_QUEUE_DESTROY_FORCE) { return CELL_EINVAL; } if (!mode && queue->sq.size()) { return CELL_EBUSY; } // cleanup Emu.GetEventManager().UnregisterKey(queue->key); Emu.GetIdManager().remove(equeue_id); // signal all threads to return CELL_ECANCELED for (auto& thread : queue->sq) { if (queue->type == SYS_PPU_QUEUE && thread->get_type() == CPU_THREAD_PPU) { static_cast(*thread).GPR[3] = 1; } else if (queue->type == SYS_SPU_QUEUE && thread->get_type() == CPU_THREAD_SPU) { static_cast(*thread).ch_in_mbox.set_values(1, CELL_ECANCELED); } else { throw EXCEPTION("Unexpected (queue_type=%d, thread_type=%d)", queue->type, thread->get_type()); } thread->signal(); } return CELL_OK; } s32 sys_event_queue_tryreceive(u32 equeue_id, vm::ptr event_array, s32 size, vm::ptr number) { sys_event.Log("sys_event_queue_tryreceive(equeue_id=0x%x, event_array=*0x%x, size=%d, number=*0x%x)", equeue_id, event_array, size, number); LV2_LOCK; const auto queue = Emu.GetIdManager().get(equeue_id); if (!queue) { return CELL_ESRCH; } if (size < 0) { throw EXCEPTION("Negative size"); } if (queue->type != SYS_PPU_QUEUE) { return CELL_EINVAL; } s32 count = 0; while (queue->sq.empty() && count < size && queue->events.size()) { auto& dest = event_array[count++]; std::tie(dest.source, dest.data1, dest.data2, dest.data3) = queue->events.front(); queue->events.pop_front(); } *number = count; return CELL_OK; } s32 sys_event_queue_receive(PPUThread& ppu, u32 equeue_id, vm::ptr dummy_event, u64 timeout) { sys_event.Log("sys_event_queue_receive(equeue_id=0x%x, *0x%x, timeout=0x%llx)", equeue_id, dummy_event, timeout); const u64 start_time = get_system_time(); LV2_LOCK; const auto queue = Emu.GetIdManager().get(equeue_id); if (!queue) { return CELL_ESRCH; } if (queue->type != SYS_PPU_QUEUE) { return CELL_EINVAL; } if (queue->events.size()) { // event data is returned in registers (dummy_event is not used) std::tie(ppu.GPR[4], ppu.GPR[5], ppu.GPR[6], ppu.GPR[7]) = queue->events.front(); queue->events.pop_front(); return CELL_OK; } // cause (if cancelled) will be returned in r3 ppu.GPR[3] = 0; // add waiter; protocol is ignored in current implementation sleep_queue_entry_t waiter(ppu, queue->sq); while (!ppu.unsignal()) { CHECK_EMU_STATUS; if (timeout) { const u64 passed = get_system_time() - start_time; if (passed >= timeout) { return CELL_ETIMEDOUT; } ppu.cv.wait_for(lv2_lock, std::chrono::microseconds(timeout - passed)); } else { ppu.cv.wait(lv2_lock); } } if (ppu.GPR[3]) { if (Emu.GetIdManager().check_id(equeue_id)) { throw EXCEPTION("Unexpected"); } return CELL_ECANCELED; } // r4-r7 registers must be set by push() return CELL_OK; } s32 sys_event_queue_drain(u32 equeue_id) { sys_event.Log("sys_event_queue_drain(equeue_id=0x%x)", equeue_id); LV2_LOCK; const auto queue = Emu.GetIdManager().get(equeue_id); if (!queue) { return CELL_ESRCH; } queue->events.clear(); return CELL_OK; } s32 sys_event_port_create(vm::ptr eport_id, s32 port_type, u64 name) { sys_event.Warning("sys_event_port_create(eport_id=*0x%x, port_type=%d, name=0x%llx)", eport_id, port_type, name); if (port_type != SYS_EVENT_PORT_LOCAL) { sys_event.Error("sys_event_port_create(): unknown port type (%d)", port_type); return CELL_EINVAL; } *eport_id = Emu.GetIdManager().make(port_type, name); return CELL_OK; } s32 sys_event_port_destroy(u32 eport_id) { sys_event.Warning("sys_event_port_destroy(eport_id=0x%x)", eport_id); LV2_LOCK; const auto port = Emu.GetIdManager().get(eport_id); if (!port) { return CELL_ESRCH; } if (!port->queue.expired()) { return CELL_EISCONN; } Emu.GetIdManager().remove(eport_id); return CELL_OK; } s32 sys_event_port_connect_local(u32 eport_id, u32 equeue_id) { sys_event.Warning("sys_event_port_connect_local(eport_id=0x%x, equeue_id=0x%x)", eport_id, equeue_id); LV2_LOCK; const auto port = Emu.GetIdManager().get(eport_id); const auto queue = Emu.GetIdManager().get(equeue_id); if (!port || !queue) { return CELL_ESRCH; } if (port->type != SYS_EVENT_PORT_LOCAL) { return CELL_EINVAL; } if (!port->queue.expired()) { return CELL_EISCONN; } port->queue = queue; return CELL_OK; } s32 sys_event_port_disconnect(u32 eport_id) { sys_event.Warning("sys_event_port_disconnect(eport_id=0x%x)", eport_id); LV2_LOCK; const auto port = Emu.GetIdManager().get(eport_id); if (!port) { return CELL_ESRCH; } const auto queue = port->queue.lock(); if (!queue) { return CELL_ENOTCONN; } // CELL_EBUSY is not returned port->queue.reset(); return CELL_OK; } s32 sys_event_port_send(u32 eport_id, u64 data1, u64 data2, u64 data3) { sys_event.Log("sys_event_port_send(eport_id=0x%x, data1=0x%llx, data2=0x%llx, data3=0x%llx)", eport_id, data1, data2, data3); LV2_LOCK; const auto port = Emu.GetIdManager().get(eport_id); if (!port) { return CELL_ESRCH; } const auto queue = port->queue.lock(); if (!queue) { return CELL_ENOTCONN; } if (queue->events.size() >= queue->size) { return CELL_EBUSY; } const u64 source = port->name ? port->name : ((u64)process_getpid() << 32) | (u64)eport_id; queue->push(lv2_lock, source, data1, data2, data3); return CELL_OK; }