#include "stdafx.h" #include "Memory.h" #include "Emu/System.h" #include "Utilities/mutex.h" #include "Utilities/Thread.h" #include "Utilities/VirtualMemory.h" #include "Emu/CPU/CPUThread.h" #include "Emu/Cell/lv2/sys_memory.h" #include "Emu/RSX/GSRender.h" #ifdef _WIN32 #include #else #include #include #include #include #include /* OS X uses MAP_ANON instead of MAP_ANONYMOUS */ #ifndef MAP_ANONYMOUS #define MAP_ANONYMOUS MAP_ANON #endif #endif #include #include namespace vm { static u8* memory_reserve_4GiB(std::uintptr_t _addr = 0) { for (u64 addr = _addr + 0x100000000;; addr += 0x100000000) { if (auto ptr = utils::memory_reserve(0x100000000, (void*)addr)) { return static_cast(ptr); } } // TODO: a condition to break loop return static_cast(utils::memory_reserve(0x100000000)); } // Emulated virtual memory u8* const g_base_addr = memory_reserve_4GiB(0); // Auxiliary virtual memory for executable areas u8* const g_exec_addr = memory_reserve_4GiB((std::uintptr_t)g_base_addr); // Memory locations std::vector> g_locations; // Reservations (lock lines) in a single memory page using reservation_info = std::array, 4096 / 128>; // Registered waiters std::deque g_waiters; // Memory mutex core shared_mutex g_mutex; // Memory mutex acknowledgement thread_local atomic_t* g_tls_locked = nullptr; // Memory mutex: passive locks std::array, 32> g_locks; static void _register_lock(cpu_thread* _cpu) { for (u32 i = 0;; i = (i + 1) % g_locks.size()) { if (!g_locks[i] && g_locks[i].compare_and_swap_test(nullptr, _cpu)) { g_tls_locked = g_locks.data() + i; return; } } } void passive_lock(cpu_thread& cpu) { if (g_tls_locked && *g_tls_locked == &cpu) { return; } ::reader_lock lock(g_mutex); _register_lock(&cpu); } void passive_unlock(cpu_thread& cpu) { if (g_tls_locked) { g_tls_locked->compare_and_swap_test(&cpu, nullptr); ::reader_lock lock(g_mutex); g_tls_locked = nullptr; } } void cleanup_unlock(cpu_thread& cpu) noexcept { if (g_tls_locked && cpu.get() == thread_ctrl::get_current()) { g_tls_locked = nullptr; } for (u32 i = 0; i < g_locks.size(); i++) { if (g_locks[i] == &cpu) { g_locks[i].compare_and_swap_test(&cpu, nullptr); return; } } } void temporary_unlock(cpu_thread& cpu) noexcept { if (g_tls_locked && g_tls_locked->compare_and_swap_test(&cpu, nullptr)) { cpu.state.test_and_set(cpu_flag::memory); } } void temporary_unlock() noexcept { if (auto cpu = get_current_cpu_thread()) { temporary_unlock(*cpu); } } reader_lock::reader_lock() : locked(true) { auto cpu = get_current_cpu_thread(); if (!cpu || !g_tls_locked || !g_tls_locked->compare_and_swap_test(cpu, nullptr)) { cpu = nullptr; } g_mutex.lock_shared(); if (cpu) { _register_lock(cpu); cpu->state -= cpu_flag::memory; } } reader_lock::reader_lock(const try_to_lock_t&) : locked(g_mutex.try_lock_shared()) { } reader_lock::~reader_lock() { if (locked) { g_mutex.unlock_shared(); } } writer_lock::writer_lock(int full) : locked(true) { auto cpu = get_current_cpu_thread(); if (!cpu || !g_tls_locked || !g_tls_locked->compare_and_swap_test(cpu, nullptr)) { cpu = nullptr; } g_mutex.lock(); if (full) { for (auto& lock : g_locks) { if (cpu_thread* ptr = lock) { ptr->state.test_and_set(cpu_flag::memory); } } for (auto& lock : g_locks) { while (cpu_thread* ptr = lock) { if (test(ptr->state, cpu_flag::dbg_global_stop + cpu_flag::exit)) { break; } busy_wait(); } } } if (cpu) { _register_lock(cpu); cpu->state -= cpu_flag::memory; } } writer_lock::writer_lock(const try_to_lock_t&) : locked(g_mutex.try_lock()) { } writer_lock::~writer_lock() { if (locked) { g_mutex.unlock(); } } // Page information struct memory_page { // Memory flags atomic_t flags; atomic_t waiters; // Reservations atomic_t reservations; // Access reservation info std::atomic& operator [](u32 addr) { auto ptr = reservations.load(); if (!ptr) { // Opportunistic memory allocation ptr = new reservation_info{}; if (auto old_ptr = reservations.compare_and_swap(nullptr, ptr)) { delete ptr; ptr = old_ptr; } } return (*ptr)[(addr & 0xfff) >> 7]; } }; // Memory pages std::array g_pages{}; u64 reservation_acquire(u32 addr, u32 _size) { // Access reservation info: stamp and the lock bit return g_pages[addr >> 12][addr].load(std::memory_order_acquire); } void reservation_update(u32 addr, u32 _size) { // Update reservation info with new timestamp (unsafe, assume allocated) (*g_pages[addr >> 12].reservations)[(addr & 0xfff) >> 7].store(__rdtsc(), std::memory_order_release); } void waiter::init() { // Register waiter writer_lock lock(0); g_waiters.emplace_back(this); } void waiter::test() const { if (std::memcmp(data, vm::base(addr), size) == 0) { return; } memory_page& page = g_pages[addr >> 12]; if (page.reservations == nullptr) { return; } if (stamp >= (*page.reservations)[(addr & 0xfff) >> 7].load()) { return; } if (owner) { owner->notify(); } } waiter::~waiter() { // Unregister waiter writer_lock lock(0); // Find waiter const auto found = std::find(g_waiters.cbegin(), g_waiters.cend(), this); if (found != g_waiters.cend()) { g_waiters.erase(found); } } void notify(u32 addr, u32 size) { for (const waiter* ptr : g_waiters) { if (ptr->addr / 128 == addr / 128) { ptr->test(); } } } void notify_all() { for (const waiter* ptr : g_waiters) { ptr->test(); } } void _page_map(u32 addr, u32 size, u8 flags) { if (!size || (size | addr) % 4096 || flags & page_allocated) { fmt::throw_exception("Invalid arguments (addr=0x%x, size=0x%x)" HERE, addr, size); } for (u32 i = addr / 4096; i < addr / 4096 + size / 4096; i++) { if (g_pages[i].flags) { fmt::throw_exception("Memory already mapped (addr=0x%x, size=0x%x, flags=0x%x, current_addr=0x%x)" HERE, addr, size, flags, i * 4096); } } void* real_addr = g_base_addr + addr; void* exec_addr = g_exec_addr + addr; #ifdef _WIN32 auto protection = flags & page_writable ? PAGE_READWRITE : (flags & page_readable ? PAGE_READONLY : PAGE_NOACCESS); verify(__func__), ::VirtualAlloc(real_addr, size, MEM_COMMIT, protection); #else auto protection = flags & page_writable ? PROT_WRITE | PROT_READ : (flags & page_readable ? PROT_READ : PROT_NONE); verify(__func__), !::mprotect(real_addr, size, protection), !::madvise(real_addr, size, MADV_WILLNEED); #endif for (u32 i = addr / 4096; i < addr / 4096 + size / 4096; i++) { if (g_pages[i].flags.exchange(flags | page_allocated)) { fmt::throw_exception("Concurrent access (addr=0x%x, size=0x%x, flags=0x%x, current_addr=0x%x)" HERE, addr, size, flags, i * 4096); } } } bool page_protect(u32 addr, u32 size, u8 flags_test, u8 flags_set, u8 flags_clear) { writer_lock lock; if (!size || (size | addr) % 4096) { fmt::throw_exception("Invalid arguments (addr=0x%x, size=0x%x)" HERE, addr, size); } const u8 flags_both = flags_set & flags_clear; flags_test |= page_allocated; flags_set &= ~flags_both; flags_clear &= ~flags_both; for (u32 i = addr / 4096; i < addr / 4096 + size / 4096; i++) { if ((g_pages[i].flags & flags_test) != (flags_test | page_allocated)) { return false; } } if (!flags_set && !flags_clear) { return true; } u8 start_value = 0xff; for (u32 start = addr / 4096, end = start + size / 4096, i = start; i < end + 1; i++) { u8 new_val = 0xff; if (i < end) { g_pages[i].flags |= flags_set; g_pages[i].flags &= ~flags_clear; new_val = g_pages[i].flags & (page_readable | page_writable); } if (new_val != start_value) { if (u32 page_size = (i - start) * 4096) { #ifdef _WIN32 DWORD old; auto protection = start_value & page_writable ? PAGE_READWRITE : (start_value & page_readable ? PAGE_READONLY : PAGE_NOACCESS); verify(__func__), ::VirtualProtect(vm::base(start * 4096), page_size, protection, &old); #else auto protection = start_value & page_writable ? PROT_WRITE | PROT_READ : (start_value & page_readable ? PROT_READ : PROT_NONE); verify(__func__), !::mprotect(vm::base(start * 4096), page_size, protection); #endif } start_value = new_val; start = i; } } return true; } void _page_unmap(u32 addr, u32 size) { if (!size || (size | addr) % 4096) { fmt::throw_exception("Invalid arguments (addr=0x%x, size=0x%x)" HERE, addr, size); } for (u32 i = addr / 4096; i < addr / 4096 + size / 4096; i++) { if ((g_pages[i].flags & page_allocated) == 0) { fmt::throw_exception("Memory not mapped (addr=0x%x, size=0x%x, current_addr=0x%x)" HERE, addr, size, i * 4096); } } for (u32 i = addr / 4096; i < addr / 4096 + size / 4096; i++) { if (!(g_pages[i].flags.exchange(0) & page_allocated)) { fmt::throw_exception("Concurrent access (addr=0x%x, size=0x%x, current_addr=0x%x)" HERE, addr, size, i * 4096); } } void* real_addr = g_base_addr + addr; void* exec_addr = g_exec_addr + addr; #ifdef _WIN32 verify(__func__), ::VirtualFree(real_addr, size, MEM_DECOMMIT); verify(__func__), ::VirtualFree(exec_addr, size, MEM_DECOMMIT); #else verify(__func__), ::mmap(real_addr, size, PROT_NONE, MAP_FIXED | MAP_ANON | MAP_PRIVATE, -1, 0); verify(__func__), ::mmap(exec_addr, size, PROT_NONE, MAP_FIXED | MAP_ANON | MAP_PRIVATE, -1, 0); #endif } bool check_addr(u32 addr, u32 size, u8 flags) { for (u32 i = addr / 4096; i <= (addr + size - 1) / 4096; i++) { if (UNLIKELY((g_pages[i % g_pages.size()].flags & flags) != flags)) { return false; } } return true; } u32 alloc(u32 size, memory_location_t location, u32 align, u32 sup) { const auto block = get(location); if (!block) { fmt::throw_exception("Invalid memory location (%u)" HERE, (uint)location); } return block->alloc(size, align, sup); } u32 falloc(u32 addr, u32 size, memory_location_t location, u32 sup) { const auto block = get(location, addr); if (!block) { fmt::throw_exception("Invalid memory location (%u, addr=0x%x)" HERE, (uint)location, addr); } return block->falloc(addr, size, sup); } u32 dealloc(u32 addr, memory_location_t location, u32* sup_out) { const auto block = get(location, addr); if (!block) { fmt::throw_exception("Invalid memory location (%u, addr=0x%x)" HERE, (uint)location, addr); } return block->dealloc(addr, sup_out); } void dealloc_verbose_nothrow(u32 addr, memory_location_t location) noexcept { const auto block = get(location, addr); if (!block) { LOG_ERROR(MEMORY, "vm::dealloc(): invalid memory location (%u, addr=0x%x)\n", (uint)location, addr); return; } if (!block->dealloc(addr)) { LOG_ERROR(MEMORY, "vm::dealloc(): deallocation failed (addr=0x%x)\n", addr); return; } } bool block_t::try_alloc(u32 addr, u32 size, u8 flags, u32 sup) { // Check if memory area is already mapped for (u32 i = addr / 4096; i <= (addr + size - 1) / 4096; i++) { if (g_pages[i].flags) { return false; } } // Map "real" memory pages _page_map(addr, size, flags); // Add entry m_map[addr] = size; // Add supplementary info if necessary if (sup) m_sup[addr] = sup; return true; } block_t::block_t(u32 addr, u32 size, u64 flags) : addr(addr) , size(size) , flags(flags) { } block_t::~block_t() { writer_lock lock; // Deallocate all memory for (auto& entry : m_map) { _page_unmap(entry.first, entry.second); } } u32 block_t::alloc(u32 size, u32 align, u32 sup) { writer_lock lock; // Align to minimal page size size = ::align(size, 4096); // Check alignment (it's page allocation, so passing small values there is just silly) if (align < 4096 || align != (0x80000000u >> cntlz32(align, true))) { fmt::throw_exception("Invalid alignment (size=0x%x, align=0x%x)" HERE, size, align); } // Return if size is invalid if (!size || size > this->size) { return 0; } u8 pflags = page_readable | page_writable; if (align >= 0x100000) { pflags |= page_1m_size; } else if (align >= 0x10000) { pflags |= page_64k_size; } // Search for an appropriate place (unoptimized) for (u32 addr = ::align(this->addr, align); addr < this->addr + this->size - 1; addr += align) { if (try_alloc(addr, size, pflags, sup)) { return addr; } } return 0; } u32 block_t::falloc(u32 addr, u32 size, u32 sup) { writer_lock lock; // align to minimal page size size = ::align(size, 4096); // return if addr or size is invalid if (!size || size > this->size || addr < this->addr || addr + size - 1 > this->addr + this->size - 1) { return 0; } u8 pflags = page_readable | page_writable; if ((flags & SYS_MEMORY_PAGE_SIZE_1M) == SYS_MEMORY_PAGE_SIZE_1M) { pflags |= page_1m_size; } else if ((flags & SYS_MEMORY_PAGE_SIZE_64K) == SYS_MEMORY_PAGE_SIZE_64K) { pflags |= page_64k_size; } if (!try_alloc(addr, size, pflags, sup)) { return 0; } return addr; } u32 block_t::dealloc(u32 addr, u32* sup_out) { writer_lock lock; const auto found = m_map.find(addr); if (found != m_map.end()) { const u32 size = found->second; const auto rsxthr = fxm::get(); // Remove entry m_map.erase(found); // Unmap "real" memory pages _page_unmap(addr, size); // Notify rsx to invalidate range if (rsxthr != nullptr) rsxthr->on_notify_memory_unmapped(addr, size); // Write supplementary info if necessary if (sup_out) *sup_out = m_sup[addr]; // Remove supplementary info m_sup.erase(addr); return size; } return 0; } u32 block_t::imp_used(const vm::writer_lock&) { u32 result = 0; for (auto& entry : m_map) { result += entry.second; } return result; } u32 block_t::used() { writer_lock lock(0); return imp_used(lock); } std::shared_ptr map(u32 addr, u32 size, u64 flags) { writer_lock lock(0); if (!size || (size | addr) % 4096) { fmt::throw_exception("Invalid arguments (addr=0x%x, size=0x%x)" HERE, addr, size); } for (auto& block : g_locations) { if (block->addr >= addr && block->addr <= addr + size - 1) { return nullptr; } if (addr >= block->addr && addr <= block->addr + block->size - 1) { return nullptr; } } for (u32 i = addr / 4096; i < addr / 4096 + size / 4096; i++) { if (g_pages[i].flags) { fmt::throw_exception("Unexpected pages allocated (current_addr=0x%x)" HERE, i * 4096); } } auto block = std::make_shared(addr, size, flags); g_locations.emplace_back(block); return block; } std::shared_ptr unmap(u32 addr, bool must_be_empty) { writer_lock lock(0); for (auto it = g_locations.begin(); it != g_locations.end(); it++) { if (*it && (*it)->addr == addr) { if (must_be_empty && (!it->unique() || (*it)->imp_used(lock))) { return *it; } auto block = std::move(*it); g_locations.erase(it); return block; } } return nullptr; } std::shared_ptr get(memory_location_t location, u32 addr) { reader_lock lock; if (location != any) { // return selected location if (location < g_locations.size()) { return g_locations[location]; } return nullptr; } // search location by address for (auto& block : g_locations) { if (addr >= block->addr && addr <= block->addr + block->size - 1) { return block; } } return nullptr; } namespace ps3 { void init() { g_locations = { std::make_shared(0x00010000, 0x1FFF0000), // main std::make_shared(0x20000000, 0x10000000), // user std::make_shared(0xC0000000, 0x10000000), // video std::make_shared(0xD0000000, 0x10000000), // stack std::make_shared(0xE0000000, 0x20000000), // SPU reserved std::make_shared(0x40000000, 0x10000000), // rsx contexts std::make_shared(0x30000000, 0x10000000), // main extend }; } } namespace psv { void init() { g_locations = { std::make_shared(0x81000000, 0x10000000), // RAM std::make_shared(0x91000000, 0x2F000000), // user std::make_shared(0xC0000000, 0x10000000), // video (arbitrarily) std::make_shared(0xD0000000, 0x10000000), // stack (arbitrarily) }; } } namespace psp { void init() { g_locations = { std::make_shared(0x08000000, 0x02000000), // RAM std::make_shared(0x08800000, 0x01800000), // user std::make_shared(0x04000000, 0x00200000), // VRAM nullptr, // stack std::make_shared(0x00010000, 0x00004000), // scratchpad std::make_shared(0x88000000, 0x00800000), // kernel }; } } void close() { g_locations.clear(); utils::memory_decommit(g_base_addr, 0x100000000); utils::memory_decommit(g_exec_addr, 0x100000000); } } void fmt_class_string>::format(std::string& out, u64 arg) { fmt_class_string::format(out, arg); } void fmt_class_string>::format(std::string& out, u64 arg) { // Special case (may be allowed for some arguments) if (arg == 0) { out += u8"«NULL»"; return; } // Filter certainly invalid addresses (TODO) if (arg < 0x10000 || arg >= 0xf0000000) { out += u8"«INVALID_ADDRESS:"; fmt_class_string::format(out, arg); out += u8"»"; return; } const auto start = out.size(); out += u8"“"; for (vm::_ptr_base ptr = vm::cast(arg);; ptr++) { if (!vm::check_addr(ptr.addr())) { // TODO: optimize checks out.resize(start); out += u8"«INVALID_ADDRESS:"; fmt_class_string::format(out, arg); out += u8"»"; return; } if (const char ch = *ptr) { out += ch; } else { break; } } out += u8"”"; }