rpcsx/rpcs3/util/atomic.hpp

1729 lines
42 KiB
C++
Raw Normal View History

#pragma once // No BOM and only basic ASCII in this header, or a neko will die
2020-12-12 13:01:29 +01:00
#include "util/types.hpp"
#include <functional>
#include <mutex>
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable: 4996)
#endif
FORCE_INLINE void atomic_fence_consume()
{
#ifdef _MSC_VER
_ReadWriteBarrier();
#else
__atomic_thread_fence(__ATOMIC_CONSUME);
#endif
}
FORCE_INLINE void atomic_fence_acquire()
{
#ifdef _MSC_VER
_ReadWriteBarrier();
#else
__atomic_thread_fence(__ATOMIC_ACQUIRE);
#endif
}
FORCE_INLINE void atomic_fence_release()
{
#ifdef _MSC_VER
_ReadWriteBarrier();
#else
__atomic_thread_fence(__ATOMIC_RELEASE);
#endif
}
FORCE_INLINE void atomic_fence_acq_rel()
{
#ifdef _MSC_VER
_ReadWriteBarrier();
#else
__atomic_thread_fence(__ATOMIC_ACQ_REL);
#endif
}
FORCE_INLINE void atomic_fence_seq_cst()
{
#ifdef _MSC_VER
_ReadWriteBarrier();
_InterlockedOr(static_cast<long*>(_AddressOfReturnAddress()), 0);
_ReadWriteBarrier();
#else
2020-12-08 06:51:27 +01:00
__asm__ volatile ("lock orl $0, 0(%%rsp);" ::: "cc", "memory");
#endif
}
#ifdef _MSC_VER
#pragma warning(pop)
#endif
2019-09-09 01:42:05 +02:00
// Wait timeout extension (in nanoseconds)
enum class atomic_wait_timeout : u64
{
inf = 0xffffffffffffffff,
2019-09-09 01:42:05 +02:00
};
// Various extensions for atomic_t::wait
namespace atomic_wait
{
// Max number of simultaneous atomic variables to wait on (can be extended if really necessary)
constexpr uint max_list = 8;
enum class op : u8
{
eq, // Wait while value is bitwise equal to
slt, // Wait while signed value is less than
sgt, // Wait while signed value is greater than
ult, // Wait while unsigned value is less than
ugt, // Wait while unsigned value is greater than
alt, // Wait while absolute value is less than
agt, // Wait while absolute value is greater than
pop, // Wait while set bit count of the value is less than
__max
};
static_assert(static_cast<u8>(op::__max) == 8);
enum class op_flag : u8
{
inverse = 1 << 4, // Perform inverse operation (negate the result)
bit_not = 1 << 5, // Perform bitwise NOT on loaded value before operation
byteswap = 1 << 6, // Perform byteswap on both arguments and masks when applicable
};
constexpr op_flag op_be = std::endian::native == std::endian::little ? op_flag::byteswap : op_flag{0};
constexpr op_flag op_le = std::endian::native == std::endian::little ? op_flag{0} : op_flag::byteswap;
constexpr op operator |(op_flag lhs, op_flag rhs)
{
return op{static_cast<u8>(static_cast<u8>(lhs) | static_cast<u8>(rhs))};
}
constexpr op operator |(op_flag lhs, op rhs)
{
return op{static_cast<u8>(static_cast<u8>(lhs) | static_cast<u8>(rhs))};
}
constexpr op operator |(op lhs, op_flag rhs)
{
return op{static_cast<u8>(static_cast<u8>(lhs) | static_cast<u8>(rhs))};
}
constexpr op op_ne = op::eq | op_flag::inverse;
constexpr struct any_value_t
{
template <typename T>
operator T() const noexcept
{
return T();
}
} any_value;
template <typename X, typename T = decltype(std::declval<X>().observe())>
inline __m128i default_mask = sizeof(T) <= 8
? _mm_cvtsi64_si128(UINT64_MAX >> ((64 - sizeof(T) * 8) & 63))
: _mm_set1_epi64x(-1);
template <typename X, typename T = decltype(std::declval<X>().observe())>
constexpr __m128i get_value(X&, T value = T{}, ...)
{
static_assert((sizeof(T) & (sizeof(T) - 1)) == 0);
static_assert(sizeof(T) <= 16);
if constexpr (sizeof(T) <= 8)
{
return _mm_cvtsi64_si128(std::bit_cast<get_uint_t<sizeof(T)>, T>(value));
}
else if constexpr (sizeof(T) == 16)
{
return std::bit_cast<__m128i>(value);
}
}
struct info
{
const void* data;
u32 size;
__m128i old;
__m128i mask;
template <typename X, typename T = decltype(std::declval<X>().observe())>
constexpr void set_value(X& a, T value = T{})
{
old = get_value(a, value);
}
template <typename X, typename T = decltype(std::declval<X>().observe())>
constexpr void set_mask(T value)
{
static_assert((sizeof(T) & (sizeof(T) - 1)) == 0);
static_assert(sizeof(T) <= 16);
if constexpr (sizeof(T) <= 8)
{
mask = _mm_cvtsi64_si128(std::bit_cast<get_uint_t<sizeof(T)>, T>(value));
}
else if constexpr (sizeof(T) == 16)
{
mask = std::bit_cast<__m128i>(value);
}
}
template <typename X, typename T = decltype(std::declval<X>().observe())>
constexpr void set_mask()
{
mask = default_mask<X>;
}
};
template <uint Max, typename... T>
class list
{
static_assert(Max <= max_list, "Too many elements in the atomic wait list.");
// Null-terminated list of wait info
info m_info[Max + 1]{};
public:
constexpr list() noexcept = default;
constexpr list(const list&) noexcept = default;
constexpr list& operator=(const list&) noexcept = default;
template <typename... U, typename = std::void_t<decltype(std::declval<U>().template wait<op::eq>(any_value))...>>
constexpr list(U&... vars)
: m_info{{&vars, sizeof(vars.observe()), get_value(vars), default_mask<U>}...}
{
static_assert(sizeof...(U) == Max, "Inconsistent amount of atomics.");
}
template <typename... U>
constexpr list& values(U... values)
{
static_assert(sizeof...(U) == Max, "Inconsistent amount of values.");
auto* ptr = m_info;
((ptr->template set_value<T>(*static_cast<T*>(ptr->data), values), ptr++), ...);
return *this;
}
template <typename... U>
constexpr list& masks(U... masks)
{
static_assert(sizeof...(U) <= Max, "Too many masks.");
auto* ptr = m_info;
((ptr++)->template set_mask<T>(masks), ...);
return *this;
}
template <uint Index, op Flags = op::eq, typename T2, typename U, typename = std::void_t<decltype(std::declval<T2>().template wait<op::eq>(any_value))>>
constexpr void set(T2& var, U value)
{
static_assert(Index < Max);
m_info[Index].data = &var;
m_info[Index].size = sizeof(var.observe()) | (static_cast<u8>(Flags) << 8);
m_info[Index].template set_value<T2>(var, value);
m_info[Index].template set_mask<T2>();
}
template <uint Index, op Flags = op::eq, typename T2, typename U, typename V, typename = std::void_t<decltype(std::declval<T2>().template wait<op::eq>(any_value))>>
constexpr void set(T2& var, U value, V mask)
{
static_assert(Index < Max);
m_info[Index].data = &var;
m_info[Index].size = sizeof(var.observe()) | (static_cast<u8>(Flags) << 8);
m_info[Index].template set_value<T2>(var, value);
m_info[Index].template set_mask<T2>(mask);
}
// Timeout is discouraged
void wait(atomic_wait_timeout timeout = atomic_wait_timeout::inf);
// Same as wait
void start()
{
wait();
}
};
template <typename... T, typename = std::void_t<decltype(std::declval<T>().template wait<op::eq>(any_value))...>>
list(T&... vars) -> list<sizeof...(T), T...>;
// RDTSC with adjustment for being unique
u64 get_unique_tsc();
}
// Helper for waitable atomics (as in C++20 std::atomic)
struct atomic_wait_engine
{
private:
template <typename T, std::size_t Align>
friend class atomic_t;
template <uint Max, typename... T>
friend class atomic_wait::list;
static void
#ifdef _WIN32
__vectorcall
#endif
wait(const void* data, u32 size, __m128i old128, u64 timeout, __m128i mask128, atomic_wait::info* extension = nullptr);
static void
#ifdef _WIN32
__vectorcall
#endif
notify_one(const void* data, u32 size, __m128i mask128, __m128i val128);
static void
#ifdef _WIN32
__vectorcall
#endif
notify_all(const void* data, u32 size, __m128i mask128);
public:
static void set_wait_callback(bool(*cb)(const void* data, u64 attempts, u64 stamp0));
static void set_notify_callback(void(*cb)(const void* data, u64 progress));
static bool raw_notify(const void* data, u64 thread_id = 0);
};
template <uint Max, typename... T>
void atomic_wait::list<Max, T...>::wait(atomic_wait_timeout timeout)
{
static_assert(Max, "Cannot initiate atomic wait with empty list.");
atomic_wait_engine::wait(m_info[0].data, m_info[0].size, m_info[0].old, static_cast<u64>(timeout), m_info[0].mask, m_info + 1);
}
2016-02-01 22:55:43 +01:00
// Helper class, provides access to compiler-specific atomic intrinsics
template <typename T, std::size_t Size = sizeof(T)>
2016-02-01 22:55:43 +01:00
struct atomic_storage
{
2016-02-01 22:55:43 +01:00
/* First part: Non-MSVC intrinsics */
using type = get_uint_t<sizeof(T)>;
2016-02-01 22:55:43 +01:00
#ifndef _MSC_VER
#if defined(__ATOMIC_HLE_ACQUIRE) && defined(__ATOMIC_HLE_RELEASE)
static constexpr int s_hle_ack = __ATOMIC_SEQ_CST | __ATOMIC_HLE_ACQUIRE;
static constexpr int s_hle_rel = __ATOMIC_SEQ_CST | __ATOMIC_HLE_RELEASE;
#else
static constexpr int s_hle_ack = __ATOMIC_SEQ_CST;
static constexpr int s_hle_rel = __ATOMIC_SEQ_CST;
#endif
2016-02-01 22:55:43 +01:00
static inline bool compare_exchange(T& dest, T& comp, T exch)
{
return __atomic_compare_exchange(reinterpret_cast<type*>(&dest), reinterpret_cast<type*>(&comp), reinterpret_cast<type*>(&exch), false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST);
2016-02-01 22:55:43 +01:00
}
static inline bool compare_exchange_hle_acq(T& dest, T& comp, T exch)
{
static_assert(sizeof(T) == 4 || sizeof(T) == 8);
return __atomic_compare_exchange(reinterpret_cast<type*>(&dest), reinterpret_cast<type*>(&comp), reinterpret_cast<type*>(&exch), false, s_hle_ack, s_hle_ack);
}
2016-02-01 22:55:43 +01:00
static inline T load(const T& dest)
{
T result;
__atomic_load(reinterpret_cast<const type*>(&dest), reinterpret_cast<type*>(&result), __ATOMIC_SEQ_CST);
2016-02-01 22:55:43 +01:00
return result;
}
static inline T observe(const T& dest)
{
T result;
__atomic_load(reinterpret_cast<const type*>(&dest), reinterpret_cast<type*>(&result), __ATOMIC_RELAXED);
return result;
}
2016-02-01 22:55:43 +01:00
static inline void store(T& dest, T value)
{
static_cast<void>(exchange(dest, value));
2016-02-01 22:55:43 +01:00
}
static inline void release(T& dest, T value)
{
__atomic_store(reinterpret_cast<type*>(&dest), reinterpret_cast<type*>(&value), __ATOMIC_RELEASE);
}
2016-02-01 22:55:43 +01:00
static inline T exchange(T& dest, T value)
{
T result;
__atomic_exchange(reinterpret_cast<type*>(&dest), reinterpret_cast<type*>(&value), reinterpret_cast<type*>(&result), __ATOMIC_SEQ_CST);
2016-02-01 22:55:43 +01:00
return result;
}
2016-02-01 22:55:43 +01:00
static inline T fetch_add(T& dest, T value)
{
return __atomic_fetch_add(&dest, value, __ATOMIC_SEQ_CST);
}
static inline T fetch_add_hle_rel(T& dest, T value)
{
static_assert(sizeof(T) == 4 || sizeof(T) == 8);
return __atomic_fetch_add(&dest, value, s_hle_rel);
}
2016-02-01 22:55:43 +01:00
static inline T add_fetch(T& dest, T value)
{
return __atomic_add_fetch(&dest, value, __ATOMIC_SEQ_CST);
}
2016-02-01 22:55:43 +01:00
static inline T fetch_sub(T& dest, T value)
{
return __atomic_fetch_sub(&dest, value, __ATOMIC_SEQ_CST);
}
2016-02-01 22:55:43 +01:00
static inline T sub_fetch(T& dest, T value)
{
return __atomic_sub_fetch(&dest, value, __ATOMIC_SEQ_CST);
}
2016-02-01 22:55:43 +01:00
static inline T fetch_and(T& dest, T value)
{
return __atomic_fetch_and(&dest, value, __ATOMIC_SEQ_CST);
}
2016-02-01 22:55:43 +01:00
static inline T and_fetch(T& dest, T value)
{
return __atomic_and_fetch(&dest, value, __ATOMIC_SEQ_CST);
}
2016-02-01 22:55:43 +01:00
static inline T fetch_xor(T& dest, T value)
{
return __atomic_fetch_xor(&dest, value, __ATOMIC_SEQ_CST);
}
2016-02-01 22:55:43 +01:00
static inline T xor_fetch(T& dest, T value)
{
return __atomic_xor_fetch(&dest, value, __ATOMIC_SEQ_CST);
}
2016-02-01 22:55:43 +01:00
static inline T fetch_or(T& dest, T value)
{
return __atomic_fetch_or(&dest, value, __ATOMIC_SEQ_CST);
}
2016-02-01 22:55:43 +01:00
static inline T or_fetch(T& dest, T value)
{
return __atomic_or_fetch(&dest, value, __ATOMIC_SEQ_CST);
}
#endif
2016-02-01 22:55:43 +01:00
/* Second part: MSVC-specific */
2016-02-01 22:55:43 +01:00
#ifdef _MSC_VER
static inline T add_fetch(T& dest, T value)
{
return atomic_storage<T>::fetch_add(dest, value) + value;
}
2016-02-01 22:55:43 +01:00
static inline T fetch_sub(T& dest, T value)
{
return atomic_storage<T>::fetch_add(dest, 0 - value);
}
2016-02-01 22:55:43 +01:00
static inline T sub_fetch(T& dest, T value)
{
return atomic_storage<T>::fetch_add(dest, 0 - value) - value;
}
2016-02-01 22:55:43 +01:00
static inline T and_fetch(T& dest, T value)
{
return atomic_storage<T>::fetch_and(dest, value) & value;
}
2016-02-01 22:55:43 +01:00
static inline T or_fetch(T& dest, T value)
{
return atomic_storage<T>::fetch_or(dest, value) | value;
}
2016-02-01 22:55:43 +01:00
static inline T xor_fetch(T& dest, T value)
{
return atomic_storage<T>::fetch_xor(dest, value) ^ value;
}
#endif
2016-02-01 22:55:43 +01:00
/* Third part: fallbacks, may be hidden by subsequent atomic_storage<> specializations */
2016-02-01 22:55:43 +01:00
static inline T fetch_inc(T& dest)
{
return atomic_storage<T>::fetch_add(dest, 1);
}
2016-02-01 22:55:43 +01:00
static inline T inc_fetch(T& dest)
{
2016-02-01 22:55:43 +01:00
return atomic_storage<T>::add_fetch(dest, 1);
}
2016-02-01 22:55:43 +01:00
static inline T fetch_dec(T& dest)
{
return atomic_storage<T>::fetch_sub(dest, 1);
}
2016-02-01 22:55:43 +01:00
static inline T dec_fetch(T& dest)
{
return atomic_storage<T>::sub_fetch(dest, 1);
}
static inline bool bts(T& dest, uint bit)
2016-02-01 22:55:43 +01:00
{
uchar* dst = reinterpret_cast<uchar*>(&dest);
if constexpr (sizeof(T) < 4)
{
const uptr ptr = reinterpret_cast<uptr>(dst);
// Align the bit up and pointer down
bit = bit + (ptr & 3) * 8;
dst = reinterpret_cast<T*>(ptr & -4);
}
#ifdef _MSC_VER
return _interlockedbittestandset((long*)dst, bit) != 0;
#else
bool result;
__asm__ volatile ("lock btsl %2, 0(%1)\n" : "=@ccc" (result) : "r" (dst), "Ir" (bit) : "cc", "memory");
return result;
#endif
}
static inline bool btr(T& dest, uint bit)
{
uchar* dst = reinterpret_cast<uchar*>(&dest);
if constexpr (sizeof(T) < 4)
{
const uptr ptr = reinterpret_cast<uptr>(dst);
// Align the bit up and pointer down
bit = bit + (ptr & 3) * 8;
dst = reinterpret_cast<T*>(ptr & -4);
}
#ifdef _MSC_VER
return _interlockedbittestandreset((long*)dst, bit) != 0;
#else
bool result;
__asm__ volatile ("lock btrl %2, 0(%1)\n" : "=@ccc" (result) : "r" (dst), "Ir" (bit) : "cc", "memory");
return result;
#endif
}
static inline bool btc(T& dest, uint bit)
{
uchar* dst = reinterpret_cast<uchar*>(&dest);
if constexpr (sizeof(T) < 4)
{
const uptr ptr = reinterpret_cast<uptr>(dst);
// Align the bit up and pointer down
bit = bit + (ptr & 3) * 8;
dst = reinterpret_cast<T*>(ptr & -4);
}
#ifdef _MSC_VER
while (true)
{
// Keep trying until we actually invert desired bit
if (!_bittest((long*)dst, bit) && !_interlockedbittestandset((long*)dst, bit))
return false;
if (_interlockedbittestandreset((long*)dst, bit))
return true;
}
#else
bool result;
__asm__ volatile ("lock btcl %2, 0(%1)\n" : "=@ccc" (result) : "r" (dst), "Ir" (bit) : "cc", "memory");
return result;
#endif
}
2016-02-01 22:55:43 +01:00
};
2016-08-10 14:48:34 +02:00
/* The rest: ugly MSVC intrinsics + inline asm implementations */
template <typename T>
2016-02-01 22:55:43 +01:00
struct atomic_storage<T, 1> : atomic_storage<T, 0>
{
2016-02-01 22:55:43 +01:00
#ifdef _MSC_VER
static inline bool compare_exchange(T& dest, T& comp, T exch)
{
2020-02-14 13:11:14 +01:00
const char v = std::bit_cast<char>(comp);
const char r = _InterlockedCompareExchange8(reinterpret_cast<volatile char*>(&dest), std::bit_cast<char>(exch), v);
comp = std::bit_cast<T>(r);
2016-02-01 22:55:43 +01:00
return r == v;
}
2016-02-01 22:55:43 +01:00
static inline T load(const T& dest)
{
atomic_fence_acquire();
const char value = *reinterpret_cast<const volatile char*>(&dest);
atomic_fence_acquire();
return std::bit_cast<T>(value);
}
static inline T observe(const T& dest)
{
2020-02-14 13:11:14 +01:00
const char value = *reinterpret_cast<const volatile char*>(&dest);
return std::bit_cast<T>(value);
2016-02-01 22:55:43 +01:00
}
static inline void release(T& dest, T value)
{
atomic_fence_release();
2020-02-14 13:11:14 +01:00
*reinterpret_cast<volatile char*>(&dest) = std::bit_cast<char>(value);
atomic_fence_release();
}
2016-02-01 22:55:43 +01:00
static inline T exchange(T& dest, T value)
{
2020-02-14 13:11:14 +01:00
const char r = _InterlockedExchange8(reinterpret_cast<volatile char*>(&dest), std::bit_cast<char>(value));
return std::bit_cast<T>(r);
}
static inline void store(T& dest, T value)
{
exchange(dest, value);
2016-02-01 22:55:43 +01:00
}
2016-02-01 22:55:43 +01:00
static inline T fetch_add(T& dest, T value)
{
2020-02-14 13:11:14 +01:00
const char r = _InterlockedExchangeAdd8(reinterpret_cast<volatile char*>(&dest), std::bit_cast<char>(value));
return std::bit_cast<T>(r);
2016-02-01 22:55:43 +01:00
}
2016-02-01 22:55:43 +01:00
static inline T fetch_and(T& dest, T value)
{
2020-02-14 13:11:14 +01:00
const char r = _InterlockedAnd8(reinterpret_cast<volatile char*>(&dest), std::bit_cast<char>(value));
return std::bit_cast<T>(r);
2016-02-01 22:55:43 +01:00
}
2016-02-01 22:55:43 +01:00
static inline T fetch_or(T& dest, T value)
{
2020-02-14 13:11:14 +01:00
const char r = _InterlockedOr8(reinterpret_cast<volatile char*>(&dest), std::bit_cast<char>(value));
return std::bit_cast<T>(r);
2016-02-01 22:55:43 +01:00
}
static inline T fetch_xor(T& dest, T value)
{
2020-02-14 13:11:14 +01:00
const char r = _InterlockedXor8(reinterpret_cast<volatile char*>(&dest), std::bit_cast<char>(value));
return std::bit_cast<T>(r);
2016-02-01 22:55:43 +01:00
}
#endif
};
template <typename T>
2016-02-01 22:55:43 +01:00
struct atomic_storage<T, 2> : atomic_storage<T, 0>
{
2016-02-01 22:55:43 +01:00
#ifdef _MSC_VER
static inline bool compare_exchange(T& dest, T& comp, T exch)
{
2020-02-14 13:11:14 +01:00
const short v = std::bit_cast<short>(comp);
const short r = _InterlockedCompareExchange16(reinterpret_cast<volatile short*>(&dest), std::bit_cast<short>(exch), v);
comp = std::bit_cast<T>(r);
2016-02-01 22:55:43 +01:00
return r == v;
}
2016-02-01 22:55:43 +01:00
static inline T load(const T& dest)
{
atomic_fence_acquire();
const short value = *reinterpret_cast<const volatile short*>(&dest);
atomic_fence_acquire();
return std::bit_cast<T>(value);
}
static inline T observe(const T& dest)
{
2020-02-14 13:11:14 +01:00
const short value = *reinterpret_cast<const volatile short*>(&dest);
return std::bit_cast<T>(value);
2016-02-01 22:55:43 +01:00
}
static inline void release(T& dest, T value)
{
atomic_fence_release();
2020-02-14 13:11:14 +01:00
*reinterpret_cast<volatile short*>(&dest) = std::bit_cast<short>(value);
atomic_fence_release();
}
2016-02-01 22:55:43 +01:00
static inline T exchange(T& dest, T value)
{
2020-02-14 13:11:14 +01:00
const short r = _InterlockedExchange16(reinterpret_cast<volatile short*>(&dest), std::bit_cast<short>(value));
return std::bit_cast<T>(r);
}
static inline void store(T& dest, T value)
{
exchange(dest, value);
2016-02-01 22:55:43 +01:00
}
2016-02-01 22:55:43 +01:00
static inline T fetch_add(T& dest, T value)
{
2020-02-14 13:11:14 +01:00
const short r = _InterlockedExchangeAdd16(reinterpret_cast<volatile short*>(&dest), std::bit_cast<short>(value));
return std::bit_cast<T>(r);
2016-02-01 22:55:43 +01:00
}
2016-02-01 22:55:43 +01:00
static inline T fetch_and(T& dest, T value)
{
2020-02-14 13:11:14 +01:00
const short r = _InterlockedAnd16(reinterpret_cast<volatile short*>(&dest), std::bit_cast<short>(value));
return std::bit_cast<T>(r);
2016-02-01 22:55:43 +01:00
}
2016-02-01 22:55:43 +01:00
static inline T fetch_or(T& dest, T value)
{
2020-02-14 13:11:14 +01:00
const short r = _InterlockedOr16(reinterpret_cast<volatile short*>(&dest), std::bit_cast<short>(value));
return std::bit_cast<T>(r);
2016-02-01 22:55:43 +01:00
}
2016-02-01 22:55:43 +01:00
static inline T fetch_xor(T& dest, T value)
{
2020-02-14 13:11:14 +01:00
const short r = _InterlockedXor16(reinterpret_cast<volatile short*>(&dest), std::bit_cast<short>(value));
return std::bit_cast<T>(r);
2016-02-01 22:55:43 +01:00
}
2016-02-01 22:55:43 +01:00
static inline T inc_fetch(T& dest)
{
2020-02-14 13:11:14 +01:00
const short r = _InterlockedIncrement16(reinterpret_cast<volatile short*>(&dest));
return std::bit_cast<T>(r);
}
2016-02-01 22:55:43 +01:00
static inline T dec_fetch(T& dest)
{
2020-02-14 13:11:14 +01:00
const short r = _InterlockedDecrement16(reinterpret_cast<volatile short*>(&dest));
return std::bit_cast<T>(r);
2016-02-01 22:55:43 +01:00
}
#endif
};
template <typename T>
2016-02-01 22:55:43 +01:00
struct atomic_storage<T, 4> : atomic_storage<T, 0>
{
2016-02-01 22:55:43 +01:00
#ifdef _MSC_VER
static inline bool compare_exchange(T& dest, T& comp, T exch)
{
2020-02-14 13:11:14 +01:00
const long v = std::bit_cast<long>(comp);
const long r = _InterlockedCompareExchange(reinterpret_cast<volatile long*>(&dest), std::bit_cast<long>(exch), v);
comp = std::bit_cast<T>(r);
2016-02-01 22:55:43 +01:00
return r == v;
}
static inline bool compare_exchange_hle_acq(T& dest, T& comp, T exch)
{
2020-02-14 13:11:14 +01:00
const long v = std::bit_cast<long>(comp);
const long r = _InterlockedCompareExchange_HLEAcquire(reinterpret_cast<volatile long*>(&dest), std::bit_cast<long>(exch), v);
comp = std::bit_cast<T>(r);
return r == v;
}
2016-02-01 22:55:43 +01:00
static inline T load(const T& dest)
{
atomic_fence_acquire();
const long value = *reinterpret_cast<const volatile long*>(&dest);
atomic_fence_acquire();
return std::bit_cast<T>(value);
}
static inline T observe(const T& dest)
{
2020-02-14 13:11:14 +01:00
const long value = *reinterpret_cast<const volatile long*>(&dest);
return std::bit_cast<T>(value);
2016-02-01 22:55:43 +01:00
}
static inline void release(T& dest, T value)
{
atomic_fence_release();
2020-02-14 13:11:14 +01:00
*reinterpret_cast<volatile long*>(&dest) = std::bit_cast<long>(value);
atomic_fence_release();
}
2016-02-01 22:55:43 +01:00
static inline T exchange(T& dest, T value)
{
2020-02-14 13:11:14 +01:00
const long r = _InterlockedExchange(reinterpret_cast<volatile long*>(&dest), std::bit_cast<long>(value));
return std::bit_cast<T>(r);
}
static inline void store(T& dest, T value)
{
exchange(dest, value);
2016-02-01 22:55:43 +01:00
}
2016-02-01 22:55:43 +01:00
static inline T fetch_add(T& dest, T value)
{
2020-02-14 13:11:14 +01:00
const long r = _InterlockedExchangeAdd(reinterpret_cast<volatile long*>(&dest), std::bit_cast<long>(value));
return std::bit_cast<T>(r);
2016-02-01 22:55:43 +01:00
}
static inline T fetch_add_hle_rel(T& dest, T value)
{
2020-02-14 13:11:14 +01:00
const long r = _InterlockedExchangeAdd_HLERelease(reinterpret_cast<volatile long*>(&dest), std::bit_cast<long>(value));
return std::bit_cast<T>(r);
}
2016-02-01 22:55:43 +01:00
static inline T fetch_and(T& dest, T value)
{
2020-02-14 13:11:14 +01:00
long r = _InterlockedAnd(reinterpret_cast<volatile long*>(&dest), std::bit_cast<long>(value));
return std::bit_cast<T>(r);
}
2016-02-01 22:55:43 +01:00
static inline T fetch_or(T& dest, T value)
{
2020-02-14 13:11:14 +01:00
const long r = _InterlockedOr(reinterpret_cast<volatile long*>(&dest), std::bit_cast<long>(value));
return std::bit_cast<T>(r);
2016-02-01 22:55:43 +01:00
}
2016-02-01 22:55:43 +01:00
static inline T fetch_xor(T& dest, T value)
{
2020-02-14 13:11:14 +01:00
const long r = _InterlockedXor(reinterpret_cast<volatile long*>(&dest), std::bit_cast<long>(value));
return std::bit_cast<T>(r);
2016-02-01 22:55:43 +01:00
}
2016-02-01 22:55:43 +01:00
static inline T inc_fetch(T& dest)
{
2020-02-14 13:11:14 +01:00
const long r = _InterlockedIncrement(reinterpret_cast<volatile long*>(&dest));
return std::bit_cast<T>(r);
2016-02-01 22:55:43 +01:00
}
2016-02-01 22:55:43 +01:00
static inline T dec_fetch(T& dest)
{
2020-02-14 13:11:14 +01:00
const long r = _InterlockedDecrement(reinterpret_cast<volatile long*>(&dest));
return std::bit_cast<T>(r);
2016-02-01 22:55:43 +01:00
}
#endif
};
template <typename T>
2016-02-01 22:55:43 +01:00
struct atomic_storage<T, 8> : atomic_storage<T, 0>
{
2016-02-01 22:55:43 +01:00
#ifdef _MSC_VER
static inline bool compare_exchange(T& dest, T& comp, T exch)
{
2020-02-14 13:11:14 +01:00
const llong v = std::bit_cast<llong>(comp);
const llong r = _InterlockedCompareExchange64(reinterpret_cast<volatile llong*>(&dest), std::bit_cast<llong>(exch), v);
comp = std::bit_cast<T>(r);
2016-02-01 22:55:43 +01:00
return r == v;
}
static inline bool compare_exchange_hle_acq(T& dest, T& comp, T exch)
{
2020-02-14 13:11:14 +01:00
const llong v = std::bit_cast<llong>(comp);
const llong r = _InterlockedCompareExchange64_HLEAcquire(reinterpret_cast<volatile llong*>(&dest), std::bit_cast<llong>(exch), v);
comp = std::bit_cast<T>(r);
return r == v;
}
2016-02-01 22:55:43 +01:00
static inline T load(const T& dest)
{
atomic_fence_acquire();
const llong value = *reinterpret_cast<const volatile llong*>(&dest);
atomic_fence_acquire();
return std::bit_cast<T>(value);
}
static inline T observe(const T& dest)
{
2020-02-14 13:11:14 +01:00
const llong value = *reinterpret_cast<const volatile llong*>(&dest);
return std::bit_cast<T>(value);
2016-02-01 22:55:43 +01:00
}
static inline void release(T& dest, T value)
{
atomic_fence_release();
2020-02-14 13:11:14 +01:00
*reinterpret_cast<volatile llong*>(&dest) = std::bit_cast<llong>(value);
atomic_fence_release();
}
2016-02-01 22:55:43 +01:00
static inline T exchange(T& dest, T value)
{
2020-02-14 13:11:14 +01:00
const llong r = _InterlockedExchange64(reinterpret_cast<volatile llong*>(&dest), std::bit_cast<llong>(value));
return std::bit_cast<T>(r);
}
static inline void store(T& dest, T value)
{
exchange(dest, value);
2016-02-01 22:55:43 +01:00
}
static inline T fetch_add(T& dest, T value)
{
2020-02-14 13:11:14 +01:00
const llong r = _InterlockedExchangeAdd64(reinterpret_cast<volatile llong*>(&dest), std::bit_cast<llong>(value));
return std::bit_cast<T>(r);
}
static inline T fetch_add_hle_rel(T& dest, T value)
{
2020-02-14 13:11:14 +01:00
const llong r = _InterlockedExchangeAdd64_HLERelease(reinterpret_cast<volatile llong*>(&dest), std::bit_cast<llong>(value));
return std::bit_cast<T>(r);
2016-02-01 22:55:43 +01:00
}
static inline T fetch_and(T& dest, T value)
{
2020-02-14 13:11:14 +01:00
const llong r = _InterlockedAnd64(reinterpret_cast<volatile llong*>(&dest), std::bit_cast<llong>(value));
return std::bit_cast<T>(r);
2016-02-01 22:55:43 +01:00
}
static inline T fetch_or(T& dest, T value)
{
2020-02-14 13:11:14 +01:00
const llong r = _InterlockedOr64(reinterpret_cast<volatile llong*>(&dest), std::bit_cast<llong>(value));
return std::bit_cast<T>(r);
2016-02-01 22:55:43 +01:00
}
static inline T fetch_xor(T& dest, T value)
{
2020-02-14 13:11:14 +01:00
const llong r = _InterlockedXor64(reinterpret_cast<volatile llong*>(&dest), std::bit_cast<llong>(value));
return std::bit_cast<T>(r);
2016-02-01 22:55:43 +01:00
}
static inline T inc_fetch(T& dest)
{
2020-02-14 13:11:14 +01:00
const llong r = _InterlockedIncrement64(reinterpret_cast<volatile llong*>(&dest));
return std::bit_cast<T>(r);
2016-02-01 22:55:43 +01:00
}
static inline T dec_fetch(T& dest)
{
2020-02-14 13:11:14 +01:00
const llong r = _InterlockedDecrement64(reinterpret_cast<volatile llong*>(&dest));
return std::bit_cast<T>(r);
2016-02-01 22:55:43 +01:00
}
#endif
};
template <typename T>
2016-02-01 22:55:43 +01:00
struct atomic_storage<T, 16> : atomic_storage<T, 0>
{
2016-02-01 22:55:43 +01:00
#ifdef _MSC_VER
static inline T load(const T& dest)
{
atomic_fence_acquire();
__m128i val = _mm_load_si128(reinterpret_cast<const __m128i*>(&dest));
atomic_fence_acquire();
return std::bit_cast<T>(val);
}
static inline T observe(const T& dest)
{
// Barriers are kept intentionally
atomic_fence_acquire();
__m128i val = _mm_load_si128(reinterpret_cast<const __m128i*>(&dest));
atomic_fence_acquire();
return std::bit_cast<T>(val);
}
2016-02-01 22:55:43 +01:00
static inline bool compare_exchange(T& dest, T& comp, T exch)
{
2020-02-14 13:11:14 +01:00
struct alignas(16) llong2 { llong ll[2]; };
2020-02-15 11:58:57 +01:00
const llong2 _exch = std::bit_cast<llong2>(exch);
2020-02-14 13:11:14 +01:00
return _InterlockedCompareExchange128(reinterpret_cast<volatile llong*>(&dest), _exch.ll[1], _exch.ll[0], reinterpret_cast<llong*>(&comp)) != 0;
2016-02-01 22:55:43 +01:00
}
2020-02-14 13:11:14 +01:00
static inline T exchange(T& dest, T value)
2016-02-01 22:55:43 +01:00
{
2020-02-14 13:11:14 +01:00
struct alignas(16) llong2 { llong ll[2]; };
const llong2 _value = std::bit_cast<llong2>(value);
const auto llptr = reinterpret_cast<volatile llong*>(&dest);
llong2 cmp{ llptr[0], llptr[1] };
while (!_InterlockedCompareExchange128(llptr, _value.ll[1], _value.ll[0], cmp.ll));
return std::bit_cast<T>(cmp);
2016-02-01 22:55:43 +01:00
}
2020-02-14 13:11:14 +01:00
static inline void store(T& dest, T value)
{
atomic_fence_acq_rel();
_mm_store_si128(reinterpret_cast<__m128i*>(&dest), std::bit_cast<__m128i>(value));
atomic_fence_seq_cst();
}
2020-02-14 13:11:14 +01:00
static inline void release(T& dest, T value)
{
atomic_fence_release();
_mm_store_si128(reinterpret_cast<__m128i*>(&dest), std::bit_cast<__m128i>(value));
atomic_fence_release();
}
#else
static inline T load(const T& dest)
{
__atomic_thread_fence(__ATOMIC_ACQUIRE);
__m128i val = _mm_load_si128(reinterpret_cast<const __m128i*>(&dest));
__atomic_thread_fence(__ATOMIC_ACQUIRE);
return std::bit_cast<T>(val);
}
static inline T observe(const T& dest)
{
// Barriers are kept intentionally
__atomic_thread_fence(__ATOMIC_ACQUIRE);
__m128i val = _mm_load_si128(reinterpret_cast<const __m128i*>(&dest));
__atomic_thread_fence(__ATOMIC_ACQUIRE);
return std::bit_cast<T>(val);
}
static inline bool compare_exchange(T& dest, T& comp, T exch)
{
bool result;
ullong cmp_lo = 0;
ullong cmp_hi = 0;
ullong exc_lo = 0;
ullong exc_hi = 0;
if constexpr (std::is_same_v<T, u128> || std::is_same_v<T, s128>)
{
cmp_lo = comp;
cmp_hi = comp >> 64;
exc_lo = exch;
exc_hi = exch >> 64;
}
else
{
std::memcpy(&cmp_lo, reinterpret_cast<char*>(&comp) + 0, 8);
std::memcpy(&cmp_hi, reinterpret_cast<char*>(&comp) + 8, 8);
std::memcpy(&exc_lo, reinterpret_cast<char*>(&exch) + 0, 8);
std::memcpy(&exc_hi, reinterpret_cast<char*>(&exch) + 8, 8);
}
__asm__ volatile("lock cmpxchg16b %1;"
: "=@ccz" (result)
, "+m" (dest)
, "+d" (cmp_hi)
, "+a" (cmp_lo)
: "c" (exc_hi)
, "b" (exc_lo)
: "cc");
if constexpr (std::is_same_v<T, u128> || std::is_same_v<T, s128>)
{
comp = T{cmp_hi} << 64 | cmp_lo;
}
else
{
std::memcpy(reinterpret_cast<char*>(&comp) + 0, &cmp_lo, 8);
std::memcpy(reinterpret_cast<char*>(&comp) + 8, &cmp_hi, 8);
}
return result;
}
static inline T exchange(T& dest, T value)
{
__atomic_thread_fence(__ATOMIC_ACQ_REL);
return std::bit_cast<T>(__sync_lock_test_and_set(reinterpret_cast<u128*>(&dest), std::bit_cast<u128>(value)));
}
static inline void store(T& dest, T value)
2016-02-01 22:55:43 +01:00
{
__atomic_thread_fence(__ATOMIC_ACQ_REL);
_mm_store_si128(reinterpret_cast<__m128i*>(&dest), std::bit_cast<__m128i>(value));
atomic_fence_seq_cst();
2016-02-01 22:55:43 +01:00
}
static inline void release(T& dest, T value)
{
__atomic_thread_fence(__ATOMIC_RELEASE);
_mm_store_si128(reinterpret_cast<__m128i*>(&dest), std::bit_cast<__m128i>(value));
__atomic_thread_fence(__ATOMIC_RELEASE);
}
2016-02-01 22:55:43 +01:00
#endif
2016-08-10 14:48:34 +02:00
// TODO
};
2016-02-01 22:55:43 +01:00
// Atomic type with lock-free and standard layout guarantees (and appropriate limitations)
template <typename T, std::size_t Align = sizeof(T)>
2016-02-01 22:55:43 +01:00
class atomic_t
{
protected:
2016-02-01 22:55:43 +01:00
using type = typename std::remove_cv<T>::type;
using ptr_rt = std::conditional_t<std::is_pointer_v<type>, ullong, type>;
static_assert((Align & (Align - 1)) == 0, "atomic_t<> error: unexpected Align parameter (not power of 2).");
static_assert(Align % sizeof(type) == 0, "atomic_t<> error: invalid type, must be power of 2.");
static_assert(sizeof(type) <= 16, "atomic_t<> error: invalid type, too big (max supported size is 16).");
static_assert(Align >= sizeof(type), "atomic_t<> error: bad args, specify bigger alignment if necessary.");
static_assert(std::is_trivially_copyable_v<type>);
static_assert(std::is_copy_constructible_v<type>);
static_assert(std::is_move_constructible_v<type>);
static_assert(std::is_copy_assignable_v<type>);
static_assert(std::is_move_assignable_v<type>);
2016-02-01 22:55:43 +01:00
alignas(Align) type m_data;
2016-02-01 22:55:43 +01:00
public:
static constexpr std::size_t align = Align;
atomic_t() noexcept = default;
atomic_t(const atomic_t&) = delete;
atomic_t& operator =(const atomic_t&) = delete;
2016-02-01 22:55:43 +01:00
// Define simple type
using simple_type = simple_t<T>;
constexpr atomic_t(const type& value) noexcept
2016-02-01 22:55:43 +01:00
: m_data(value)
{
}
// Unsafe direct access
type& raw()
{
2016-02-01 22:55:43 +01:00
return m_data;
}
2020-04-03 11:18:00 +02:00
// Unsafe direct access
const type& raw() const
{
return m_data;
}
// Atomically compare data with cmp, replace with exch if equal, return previous data value anyway
type compare_and_swap(const type& cmp, const type& exch)
{
2016-02-01 22:55:43 +01:00
type old = cmp;
atomic_storage<type>::compare_exchange(m_data, old, exch);
return old;
}
// Atomically compare data with cmp, replace with exch if equal, return true if data was replaced
2016-02-01 22:55:43 +01:00
bool compare_and_swap_test(const type& cmp, const type& exch)
{
2016-02-01 22:55:43 +01:00
type old = cmp;
return atomic_storage<type>::compare_exchange(m_data, old, exch);
}
// As in std::atomic
bool compare_exchange(type& cmp_and_old, const type& exch)
{
return atomic_storage<type>::compare_exchange(m_data, cmp_and_old, exch);
}
// Atomic operation; returns old value, or pair of old value and return value (cancel op if evaluates to false)
template <typename F, typename RT = std::invoke_result_t<F, T&>>
std::conditional_t<std::is_void_v<RT>, type, std::pair<type, RT>> fetch_op(F func)
2016-02-01 22:55:43 +01:00
{
type _new, old = atomic_storage<type>::load(m_data);
while (true)
{
_new = old;
if constexpr (std::is_void_v<RT>)
{
std::invoke(func, _new);
2016-02-01 22:55:43 +01:00
if (atomic_storage<type>::compare_exchange(m_data, old, _new)) [[likely]]
{
return old;
}
}
else
{
RT ret = std::invoke(func, _new);
if (!ret || atomic_storage<type>::compare_exchange(m_data, old, _new)) [[likely]]
{
return {old, std::move(ret)};
}
}
}
}
// Atomic operation; returns function result value, function is the lambda
template <typename F, typename RT = std::invoke_result_t<F, T&>>
RT atomic_op(F func)
{
type _new, old = atomic_storage<type>::load(m_data);
while (true)
{
_new = old;
if constexpr (std::is_void_v<RT>)
{
std::invoke(func, _new);
if (atomic_storage<type>::compare_exchange(m_data, old, _new)) [[likely]]
{
return;
}
}
else
{
RT result = std::invoke(func, _new);
if (atomic_storage<type>::compare_exchange(m_data, old, _new)) [[likely]]
{
return result;
}
}
2016-02-01 22:55:43 +01:00
}
}
2016-02-01 22:55:43 +01:00
// Atomically read data
type load() const
{
2016-02-01 22:55:43 +01:00
return atomic_storage<type>::load(m_data);
}
2016-02-01 22:55:43 +01:00
// Atomically read data
operator simple_type() const
{
2016-02-01 22:55:43 +01:00
return atomic_storage<type>::load(m_data);
}
// Relaxed load
type observe() const
{
return atomic_storage<type>::observe(m_data);
}
2016-02-01 22:55:43 +01:00
// Atomically write data
void store(const type& rhs)
{
2016-02-01 22:55:43 +01:00
atomic_storage<type>::store(m_data, rhs);
}
2016-02-01 22:55:43 +01:00
type operator =(const type& rhs)
{
2016-02-01 22:55:43 +01:00
atomic_storage<type>::store(m_data, rhs);
return rhs;
}
// Atomically write data with release memory order (faster on x86)
void release(const type& rhs)
{
atomic_storage<type>::release(m_data, rhs);
}
2016-02-01 22:55:43 +01:00
// Atomically replace data with value, return previous data value
type exchange(const type& rhs)
{
2016-02-01 22:55:43 +01:00
return atomic_storage<type>::exchange(m_data, rhs);
}
auto fetch_add(const ptr_rt& rhs)
{
if constexpr(std::is_integral<type>::value)
{
return atomic_storage<type>::fetch_add(m_data, rhs);
}
2018-08-24 01:30:38 +02:00
return fetch_op([&](T& v)
{
v += rhs;
});
}
auto add_fetch(const ptr_rt& rhs)
2016-02-01 22:55:43 +01:00
{
if constexpr(std::is_integral<type>::value)
{
return atomic_storage<type>::add_fetch(m_data, rhs);
}
return atomic_op([&](T& v)
{
v += rhs;
return v;
});
2016-02-01 22:55:43 +01:00
}
auto operator +=(const ptr_rt& rhs)
2016-02-01 22:55:43 +01:00
{
if constexpr(std::is_integral<type>::value)
{
return atomic_storage<type>::add_fetch(m_data, rhs);
}
return atomic_op([&](T& v)
{
return v += rhs;
});
2016-02-01 22:55:43 +01:00
}
auto fetch_sub(const ptr_rt& rhs)
2016-02-01 22:55:43 +01:00
{
if constexpr(std::is_integral<type>::value)
{
return atomic_storage<type>::fetch_sub(m_data, rhs);
}
return fetch_op([&](T& v)
{
v -= rhs;
});
2016-02-01 22:55:43 +01:00
}
auto sub_fetch(const ptr_rt& rhs)
2016-02-01 22:55:43 +01:00
{
if constexpr(std::is_integral<type>::value)
{
return atomic_storage<type>::sub_fetch(m_data, rhs);
}
return atomic_op([&](T& v)
{
v -= rhs;
return v;
});
2016-02-01 22:55:43 +01:00
}
auto operator -=(const ptr_rt& rhs)
2016-02-01 22:55:43 +01:00
{
if constexpr(std::is_integral<type>::value)
{
return atomic_storage<type>::sub_fetch(m_data, rhs);
}
return atomic_op([&](T& v)
{
return v -= rhs;
});
2016-02-01 22:55:43 +01:00
}
auto fetch_and(const type& rhs)
{
if constexpr(std::is_integral<type>::value)
{
return atomic_storage<type>::fetch_and(m_data, rhs);
}
return fetch_op([&](T& v)
{
v &= rhs;
});
2016-02-01 22:55:43 +01:00
}
auto and_fetch(const type& rhs)
{
if constexpr(std::is_integral<type>::value)
{
return atomic_storage<type>::and_fetch(m_data, rhs);
}
return atomic_op([&](T& v)
{
v &= rhs;
return v;
});
2016-02-01 22:55:43 +01:00
}
auto operator &=(const type& rhs)
{
if constexpr(std::is_integral<type>::value)
{
return atomic_storage<type>::and_fetch(m_data, rhs);
}
return atomic_op([&](T& v)
{
return v &= rhs;
});
2016-02-01 22:55:43 +01:00
}
auto fetch_or(const type& rhs)
{
if constexpr(std::is_integral<type>::value)
{
return atomic_storage<type>::fetch_or(m_data, rhs);
}
return fetch_op([&](T& v)
{
v |= rhs;
});
2016-02-01 22:55:43 +01:00
}
auto or_fetch(const type& rhs)
{
if constexpr(std::is_integral<type>::value)
{
return atomic_storage<type>::or_fetch(m_data, rhs);
}
return atomic_op([&](T& v)
{
v |= rhs;
return v;
});
2016-02-01 22:55:43 +01:00
}
auto operator |=(const type& rhs)
{
if constexpr(std::is_integral<type>::value)
{
return atomic_storage<type>::or_fetch(m_data, rhs);
}
return atomic_op([&](T& v)
{
return v |= rhs;
});
2016-02-01 22:55:43 +01:00
}
auto fetch_xor(const type& rhs)
2016-02-01 22:55:43 +01:00
{
if constexpr(std::is_integral<type>::value)
{
return atomic_storage<type>::fetch_xor(m_data, rhs);
}
return fetch_op([&](T& v)
{
v ^= rhs;
});
2016-02-01 22:55:43 +01:00
}
auto xor_fetch(const type& rhs)
2016-02-01 22:55:43 +01:00
{
if constexpr(std::is_integral<type>::value)
{
return atomic_storage<type>::xor_fetch(m_data, rhs);
}
return atomic_op([&](T& v)
{
v ^= rhs;
return v;
});
2016-02-01 22:55:43 +01:00
}
auto operator ^=(const type& rhs)
{
if constexpr(std::is_integral<type>::value)
{
return atomic_storage<type>::xor_fetch(m_data, rhs);
}
return atomic_op([&](T& v)
{
return v ^= rhs;
});
2016-02-01 22:55:43 +01:00
}
auto operator ++()
2016-02-01 22:55:43 +01:00
{
if constexpr(std::is_integral<type>::value)
{
return atomic_storage<type>::inc_fetch(m_data);
}
return atomic_op([](T& v)
{
return ++v;
});
2016-02-01 22:55:43 +01:00
}
auto operator --()
2016-02-01 22:55:43 +01:00
{
if constexpr(std::is_integral<type>::value)
{
return atomic_storage<type>::dec_fetch(m_data);
}
return atomic_op([](T& v)
{
return --v;
});
}
auto operator ++(int)
{
if constexpr(std::is_integral<type>::value)
{
return atomic_storage<type>::fetch_inc(m_data);
}
return atomic_op([](T& v)
{
return v++;
});
}
auto operator --(int)
{
if constexpr(std::is_integral<type>::value)
{
return atomic_storage<type>::fetch_dec(m_data);
}
return atomic_op([](T& v)
{
return v--;
});
}
// Conditionally decrement
bool try_dec(simple_type greater_than)
{
type _new, old = atomic_storage<type>::load(m_data);
while (true)
{
_new = old;
if (!(_new > greater_than))
{
return false;
}
_new -= 1;
if (atomic_storage<type>::compare_exchange(m_data, old, _new)) [[likely]]
{
return true;
}
}
}
// Conditionally increment
bool try_inc(simple_type less_than)
{
type _new, old = atomic_storage<type>::load(m_data);
while (true)
{
_new = old;
if (!(_new < less_than))
{
return false;
}
_new += 1;
if (atomic_storage<type>::compare_exchange(m_data, old, _new)) [[likely]]
{
return true;
}
}
}
bool bit_test_set(uint bit)
{
return atomic_storage<type>::bts(m_data, bit & (sizeof(T) * 8 - 1));
}
bool bit_test_reset(uint bit)
{
return atomic_storage<type>::btr(m_data, bit & (sizeof(T) * 8 - 1));
}
bool bit_test_invert(uint bit)
{
return atomic_storage<type>::btc(m_data, bit & (sizeof(T) * 8 - 1));
}
// Timeout is discouraged
template <atomic_wait::op Flags = atomic_wait::op::eq>
2019-09-09 01:42:05 +02:00
void wait(type old_value, atomic_wait_timeout timeout = atomic_wait_timeout::inf) const noexcept
{
if constexpr (sizeof(T) <= 8)
{
const __m128i old = _mm_cvtsi64_si128(std::bit_cast<get_uint_t<sizeof(T)>>(old_value));
const __m128i mask = _mm_cvtsi64_si128(UINT64_MAX >> ((64 - sizeof(T) * 8) & 63));
atomic_wait_engine::wait(&m_data, sizeof(T) | (static_cast<u8>(Flags) << 8), old, static_cast<u64>(timeout), mask);
}
else if constexpr (sizeof(T) == 16)
{
const __m128i old = std::bit_cast<__m128i>(old_value);
atomic_wait_engine::wait(&m_data, sizeof(T) | (static_cast<u8>(Flags) << 8), old, static_cast<u64>(timeout), _mm_set1_epi64x(-1));
}
}
// Overload with mask (only selected bits are checked), timeout is discouraged
template <atomic_wait::op Flags = atomic_wait::op::eq>
void wait(type old_value, type mask_value, atomic_wait_timeout timeout = atomic_wait_timeout::inf) const noexcept
{
if constexpr (sizeof(T) <= 8)
{
const __m128i old = _mm_cvtsi64_si128(std::bit_cast<get_uint_t<sizeof(T)>>(old_value));
const __m128i mask = _mm_cvtsi64_si128(std::bit_cast<get_uint_t<sizeof(T)>>(mask_value));
atomic_wait_engine::wait(&m_data, sizeof(T) | (static_cast<u8>(Flags) << 8), old, static_cast<u64>(timeout), mask);
}
else if constexpr (sizeof(T) == 16)
{
const __m128i old = std::bit_cast<__m128i>(old_value);
const __m128i mask = std::bit_cast<__m128i>(mask_value);
atomic_wait_engine::wait(&m_data, sizeof(T) | (static_cast<u8>(Flags) << 8), old, static_cast<u64>(timeout), mask);
}
}
void notify_one() noexcept
{
if constexpr (sizeof(T) <= 8)
{
atomic_wait_engine::notify_one(&m_data, -1, _mm_cvtsi64_si128(UINT64_MAX >> ((64 - sizeof(T) * 8) & 63)), _mm_setzero_si128());
}
else if constexpr (sizeof(T) == 16)
{
atomic_wait_engine::notify_one(&m_data, -1, _mm_set1_epi64x(-1), _mm_setzero_si128());
}
}
// Notify with mask, allowing to not wake up thread which doesn't wait on this mask
void notify_one(type mask_value) noexcept
{
if constexpr (sizeof(T) <= 8)
{
const __m128i mask = _mm_cvtsi64_si128(std::bit_cast<get_uint_t<sizeof(T)>>(mask_value));
atomic_wait_engine::notify_one(&m_data, -1, mask, _mm_setzero_si128());
}
else if constexpr (sizeof(T) == 16)
{
const __m128i mask = std::bit_cast<__m128i>(mask_value);
atomic_wait_engine::notify_one(&m_data, -1, mask, _mm_setzero_si128());
}
}
// Notify with mask and value, allowing to not wake up thread which doesn't wait on them
[[deprecated("Incomplete")]] void notify_one(type mask_value, type phantom_value) noexcept
{
if constexpr (sizeof(T) <= 8)
{
const __m128i mask = _mm_cvtsi64_si128(std::bit_cast<get_uint_t<sizeof(T)>>(mask_value));
const __m128i _new = _mm_cvtsi64_si128(std::bit_cast<get_uint_t<sizeof(T)>>(phantom_value));
atomic_wait_engine::notify_one(&m_data, sizeof(T), mask, _new);
}
else if constexpr (sizeof(T) == 16)
{
const __m128i mask = std::bit_cast<__m128i>(mask_value);
const __m128i _new = std::bit_cast<__m128i>(phantom_value);
atomic_wait_engine::notify_one(&m_data, sizeof(T), mask, _new);
}
}
void notify_all() noexcept
{
if constexpr (sizeof(T) <= 8)
{
atomic_wait_engine::notify_all(&m_data, -1, _mm_cvtsi64_si128(UINT64_MAX >> ((64 - sizeof(T) * 8) & 63)));
}
else if constexpr (sizeof(T) == 16)
{
atomic_wait_engine::notify_all(&m_data, -1, _mm_set1_epi64x(-1));
}
}
// Notify all threads with mask, allowing to not wake up threads which don't wait on them
void notify_all(type mask_value) noexcept
{
if constexpr (sizeof(T) <= 8)
{
const __m128i mask = _mm_cvtsi64_si128(std::bit_cast<get_uint_t<sizeof(T)>>(mask_value));
atomic_wait_engine::notify_all(&m_data, -1, mask);
}
else if constexpr (sizeof(T) == 16)
{
const __m128i mask = std::bit_cast<__m128i>(mask_value);
atomic_wait_engine::notify_all(&m_data, -1, mask);
}
}
2016-02-01 22:55:43 +01:00
};
template <std::size_t Align>
class atomic_t<bool, Align> : private atomic_t<uchar, Align>
{
using base = atomic_t<uchar, Align>;
public:
static constexpr std::size_t align = Align;
using simple_type = bool;
atomic_t() noexcept = default;
atomic_t(const atomic_t&) = delete;
atomic_t& operator =(const atomic_t&) = delete;
constexpr atomic_t(bool value) noexcept
: base(value)
{
}
bool load() const noexcept
{
return base::load() != 0;
}
operator bool() const noexcept
{
return base::load() != 0;
}
bool observe() const noexcept
{
return base::observe() != 0;
}
void store(bool value)
{
base::store(value);
}
bool operator =(bool value)
{
base::store(value);
return value;
}
void release(bool value)
{
base::release(value);
}
bool exchange(bool value)
{
return base::exchange(value) != 0;
}
bool test_and_set()
{
return base::exchange(1) != 0;
}
bool test_and_reset()
{
return base::exchange(0) != 0;
}
bool test_and_invert()
{
return base::fetch_xor(1) != 0;
}
// Timeout is discouraged
template <atomic_wait::op Flags = atomic_wait::op::eq>
void wait(bool old_value, atomic_wait_timeout timeout = atomic_wait_timeout::inf) const noexcept
{
base::template wait<Flags>(old_value, 1, timeout);
}
void notify_one() noexcept
{
base::notify_one(1);
}
void notify_all() noexcept
{
base::notify_all(1);
}
};
namespace atomic_wait
{
template <std::size_t Align>
inline __m128i default_mask<atomic_t<bool, Align>> = _mm_cvtsi32_si128(1);
}