rpcsx/rpcs3/util/atomic.cpp

875 lines
18 KiB
C++
Raw Normal View History

#include "atomic.hpp"
#if defined(__linux__)
#define USE_FUTEX
#elif !defined(_WIN32)
#define USE_STD
#endif
#include "Utilities/sync.h"
#include <utility>
#include <mutex>
#include <condition_variable>
#include <chrono>
#include <iterator>
#include <memory>
#include <cstdlib>
// Hashtable size factor (can be set to 0 to stress-test collisions)
static constexpr uint s_hashtable_power = 16;
// Total number of entries, should be a power of 2.
static constexpr std::uintptr_t s_hashtable_size = 1u << s_hashtable_power;
// Pointer mask without bits used as hash, assuming signed 48-bit pointers.
static constexpr u64 s_pointer_mask = s_hashtable_power > 7 ? 0xffff'ffff'ffff & ~((s_hashtable_size - 1)) : 0xffff'ffff'ffff;
// Max number of waiters is 32767.
static constexpr u64 s_waiter_mask = s_hashtable_power > 7 ? 0x7fff'0000'0000'0000 : 0x7f00'0000'0000'0000;
// Bit indicates that more than one.
static constexpr u64 s_collision_bit = 0x8000'0000'0000'0000;
// Allocated slot with secondary table.
static constexpr u64 s_slot_mask = ~(s_waiter_mask | s_pointer_mask | s_collision_bit);
// Helper to get least significant set bit from 64-bit masks
template <u64 Mask>
static constexpr u64 one_v = Mask & (0 - Mask);
// Callback for wait() function, returns false if wait should return
static thread_local bool(*s_tls_wait_cb)(const void* data) = [](const void*){ return true; };
// Compare data in memory with old value, and return true if they are equal
template <bool CheckCb = true, bool CheckData = true>
static inline bool ptr_cmp(const void* data, std::size_t size, u64 old_value, u64 mask)
{
if constexpr (CheckCb)
{
if (!s_tls_wait_cb(data))
{
return false;
}
}
if constexpr (CheckData)
{
if (!data)
{
return false;
}
}
switch (size)
{
case 1: return (reinterpret_cast<const atomic_t<u8>*>(data)->load() & mask) == (old_value & mask);
case 2: return (reinterpret_cast<const atomic_t<u16>*>(data)->load() & mask) == (old_value & mask);
case 4: return (reinterpret_cast<const atomic_t<u32>*>(data)->load() & mask) == (old_value & mask);
case 8: return (reinterpret_cast<const atomic_t<u64>*>(data)->load() & mask) == (old_value & mask);
}
return false;
}
#ifdef USE_STD
namespace
{
// Standard CV/mutex pair
struct cond_handle
{
std::condition_variable cond;
std::mutex mtx;
cond_handle() noexcept
{
mtx.lock();
}
};
}
// Arbitrary max allowed thread number
static constexpr u32 s_max_conds = 512 * 64;
static std::aligned_storage_t<sizeof(cond_handle), alignof(cond_handle)> s_cond_list[s_max_conds]{};
alignas(64) atomic_t<u64> s_cond_bits[s_max_conds / 64];
alignas(64) atomic_t<u32> s_cond_sema{0};
static u32 cond_alloc()
{
// Determine whether there is a free slot or not
if (!s_cond_sema.try_inc(s_max_conds + 1))
{
return 0;
}
// Diversify search start points to reduce contention and increase immediate success chance
#ifdef _WIN32
const u32 start = GetCurrentProcessorNumber();
#elif __linux__
const u32 start = sched_getcpu();
#else
const u32 start = __rdtsc();
#endif
for (u32 i = start * 8;; i++)
{
const u32 group = i % (s_max_conds / 64);
const auto [bits, ok] = s_cond_bits[group].fetch_op([](u64& bits)
{
if (~bits)
{
// Set lowest clear bit
bits |= bits + 1;
return true;
}
return false;
});
if (ok)
{
// Find lowest clear bit
const u32 id = group * 64 + std::countr_one(bits);
// Construct inplace before it can be used
new (s_cond_list + id) cond_handle();
return id + 1;
}
}
// TODO: unreachable
std::abort();
return 0;
}
static cond_handle* cond_get(u32 cond_id)
{
if (cond_id - 1 < s_max_conds) [[likely]]
{
return std::launder(reinterpret_cast<cond_handle*>(s_cond_list + (cond_id - 1)));
}
return nullptr;
}
static void cond_free(u32 cond_id)
{
if (cond_id - 1 >= s_max_conds)
{
// Ignore bad id because it may contain notifier lock
return;
}
// Call the destructor
cond_get(cond_id)->~cond_handle();
// Remove the allocation bit
s_cond_bits[(cond_id - 1) / 64] &= ~(1ull << ((cond_id - 1) % 64));
// Release the semaphore
s_cond_sema--;
}
#endif
namespace
{
struct sync_var
{
constexpr sync_var() noexcept = default;
// Reference counter, owning pointer, collision bit and optionally selected slot
atomic_t<u64> addr_ref{};
// Allocated semaphore bits (max 60)
atomic_t<u64> sema_bits{};
// Semaphores (one per thread), data is platform-specific but 0 means empty
atomic_t<u32> sema_data[60]{};
atomic_t<u32>* sema_alloc()
{
#ifdef USE_STD
const u32 cond_id = cond_alloc();
if (cond_id == 0)
{
// Too many threads
return nullptr;
}
#endif
const auto [bits, ok] = sema_bits.fetch_op([](u64& bits)
{
if (bits + 1 < (1ull << 60))
{
// Set lowest clear bit
bits |= bits + 1;
return true;
}
return false;
});
if (ok) [[likely]]
{
// Find lowest clear bit
const auto sema = &sema_data[std::countr_one(bits)];
#if defined(USE_STD)
sema->release(cond_id);
#elif defined(USE_FUTEX)
sema->release(1);
#elif defined(_WIN32)
if (NtWaitForAlertByThreadId)
{
sema->release(GetCurrentThreadId());
}
else
{
sema->release(1);
}
#endif
return sema;
}
return nullptr;
}
void sema_free(atomic_t<u32>* sema)
{
if (sema < sema_data || sema >= std::end(sema_data))
{
std::abort();
}
// Clear sema
#ifdef USE_STD
cond_free(sema->exchange(0));
#else
sema->release(0);
#endif
// Clear sema bit
sema_bits &= ~(1ull << (sema - sema_data));
}
};
}
// Main hashtable for atomic wait.
alignas(64) static sync_var s_hashtable[s_hashtable_size]{};
namespace
{
struct slot_info
{
constexpr slot_info() noexcept = default;
// Branch extension
sync_var branch[48 - s_hashtable_power]{};
};
}
// Number of search groups (defines max slot branch count as gcount * 64)
static constexpr u32 s_slot_gcount = (s_hashtable_power > 7 ? 4096 : 256) / 64;
// Array of slot branch objects
alignas(64) static slot_info s_slot_list[s_slot_gcount * 64]{};
// Allocation bits
alignas(64) static atomic_t<u64> s_slot_bits[s_slot_gcount]{};
static u64 slot_alloc()
{
// Diversify search start points to reduce contention and increase immediate success chance
#ifdef _WIN32
const u32 start = GetCurrentProcessorNumber();
#elif __linux__
const u32 start = sched_getcpu();
#else
const u32 start = __rdtsc();
#endif
for (u32 i = 0;; i++)
{
const u32 group = (i + start * 8) % s_slot_gcount;
const auto [bits, ok] = s_slot_bits[group].fetch_op([](u64& bits)
{
if (~bits)
{
// Set lowest clear bit
bits |= bits + 1;
return true;
}
return false;
});
if (ok)
{
// Find lowest clear bit
return group * 64 + std::countr_one(bits);
}
}
// TODO: unreachable
std::abort();
return 0;
}
static sync_var* slot_get(std::uintptr_t iptr, sync_var* loc, u64 lv = 0)
{
if (!loc)
{
return nullptr;
}
const u64 value = loc->addr_ref.load();
2019-10-20 21:52:18 +02:00
if ((value & s_waiter_mask) == 0)
{
return nullptr;
}
if ((value & s_pointer_mask) == (iptr & s_pointer_mask))
{
return loc;
}
if ((value & s_collision_bit) == 0)
{
return nullptr;
}
// Get the number of leading equal bits to determine subslot
const u64 eq_bits = std::countl_zero<u64>((((iptr ^ value) & (s_pointer_mask >> lv)) | ~s_pointer_mask) << 16);
// Proceed recursively, increment level
return slot_get(iptr, s_slot_list[(value & s_slot_mask) / one_v<s_slot_mask>].branch + eq_bits, eq_bits + 1);
}
static void slot_free(u64 id)
{
// Reset allocation bit
id = (id & s_slot_mask) / one_v<s_slot_mask>;
s_slot_bits[id / 64] &= ~(1ull << (id % 64));
}
2019-10-20 21:52:18 +02:00
static void slot_free(std::uintptr_t iptr, sync_var* loc, u64 lv = 0)
{
const u64 value = loc->addr_ref.load();
if ((value & s_pointer_mask) != (iptr & s_pointer_mask))
{
if ((value & s_waiter_mask) == 0 || (value & s_collision_bit) == 0)
{
std::abort();
}
// Get the number of leading equal bits to determine subslot
const u64 eq_bits = std::countl_zero<u64>((((iptr ^ value) & (s_pointer_mask >> lv)) | ~s_pointer_mask) << 16);
2019-10-20 21:52:18 +02:00
// Proceed recursively, to deallocate deepest branch first
slot_free(iptr, s_slot_list[(value & s_slot_mask) / one_v<s_slot_mask>].branch + eq_bits, eq_bits + 1);
}
// Actual cleanup in reverse order
auto [_old, ok] = loc->addr_ref.fetch_op([&](u64& value)
{
if (value & s_waiter_mask)
{
value -= one_v<s_waiter_mask>;
if (!(value & s_waiter_mask))
{
// Reset on last waiter
value = 0;
return 2;
}
return 1;
}
std::abort();
});
if (ok > 1 && _old & s_collision_bit)
{
if (loc->sema_bits)
std::abort();
2019-10-20 21:52:18 +02:00
// Deallocate slot on last waiter
slot_free(_old);
}
}
SAFE_BUFFERS void atomic_storage_futex::wait(const void* data, std::size_t size, u64 old_value, u64 timeout, u64 mask)
{
const std::uintptr_t iptr = reinterpret_cast<std::uintptr_t>(data);
// Allocated slot index
u64 slot_a = -1;
// Found slot object
sync_var* slot = nullptr;
auto install_op = [&](u64& value) -> u64
{
if ((value & s_waiter_mask) == s_waiter_mask)
2019-09-09 01:42:05 +02:00
{
// Return immediately on waiter overflow
return 0;
2019-09-09 01:42:05 +02:00
}
if (!value || (value & s_pointer_mask) == (iptr & s_pointer_mask))
{
// Store pointer bits
value |= (iptr & s_pointer_mask);
}
else
{
if ((value & s_collision_bit) == 0)
2019-09-09 01:42:05 +02:00
{
if (slot_a + 1 == 0)
2019-09-09 01:42:05 +02:00
{
// Second waiter: allocate slot and install it
slot_a = slot_alloc() * one_v<s_slot_mask>;
2019-09-09 01:42:05 +02:00
}
value |= slot_a;
2019-09-09 01:42:05 +02:00
}
// Set collision bit
value |= s_collision_bit;
}
// Add waiter
value += one_v<s_waiter_mask>;
return value;
};
// Search detail
u64 lv = 0;
for (sync_var* ptr = &s_hashtable[iptr % s_hashtable_size];;)
{
auto [_old, ok] = ptr->addr_ref.fetch_op(install_op);
if (slot_a + 1)
{
if ((_old & s_collision_bit) == 0 && (ok & s_collision_bit) && (ok & s_slot_mask) == slot_a)
{
// Slot set successfully
slot_a = -1;
}
}
if (!ok)
{
// Expected only on top level
if (timeout + 1 || ptr_cmp<false>(data, size, old_value, mask))
{
return;
}
// TODO
busy_wait(30000);
continue;
}
if (!_old || (_old & s_pointer_mask) == (iptr & s_pointer_mask))
{
// Success
if (slot_a + 1)
{
// Cleanup slot if unused
slot_free(slot_a);
slot_a = -1;
}
slot = ptr;
break;
}
// Get the number of leading equal bits (between iptr and slot owner)
const u64 eq_bits = std::countl_zero<u64>((((iptr ^ ok) & (s_pointer_mask >> lv)) | ~s_pointer_mask) << 16);
// Collision; need to go deeper
ptr = s_slot_list[(ok & s_slot_mask) / one_v<s_slot_mask>].branch + eq_bits;
lv = eq_bits + 1;
}
#ifdef _WIN32
// May be used by NtWaitForAlertByThreadId
u32 thread_id[16]{GetCurrentThreadId()};
#endif
auto sema = slot->sema_alloc();
while (!sema)
{
if (timeout + 1 || ptr_cmp<false>(data, size, old_value, mask))
{
slot_free(iptr, &s_hashtable[iptr % s_hashtable_size]);
return;
}
// TODO
busy_wait(30000);
sema = slot->sema_alloc();
}
#ifdef USE_STD
// Create mutex for condition variable (already locked)
std::unique_lock lock(cond_get(sema->load() & 0x7fffffff)->mtx, std::adopt_lock);
#endif
// Can skip unqueue process if true
#if defined(USE_FUTEX) || defined(USE_STD)
constexpr bool fallback = true;
#else
bool fallback = false;
#endif
while (ptr_cmp(data, size, old_value, mask))
{
#ifdef USE_FUTEX
struct timespec ts;
ts.tv_sec = timeout / 1'000'000'000;
ts.tv_nsec = timeout % 1'000'000'000;
if (sema->load() > 1) [[unlikely]]
{
// Signaled prematurely
sema->release(1);
}
else
{
futex(sema, FUTEX_WAIT_PRIVATE, 1, timeout + 1 ? &ts : nullptr);
}
#elif defined(USE_STD)
const u32 val = sema->load();
if (val >> 31)
{
// Locked by notifier
if (!ptr_cmp(data, size, old_value, mask))
{
break;
}
}
else if (timeout + 1)
{
cond_get(val)->cond.wait_for(lock, std::chrono::nanoseconds(timeout));
}
else
{
cond_get(val)->cond.wait(lock);
}
#elif defined(_WIN32)
LARGE_INTEGER qw;
qw.QuadPart = -static_cast<s64>(timeout / 100);
if (timeout % 100)
2019-09-09 01:42:05 +02:00
{
// Round up to closest 100ns unit
qw.QuadPart -= 1;
}
if (NtWaitForAlertByThreadId)
{
if (fallback) [[unlikely]]
{
// Restart waiting
if (sema->load() == umax)
{
sema->release(thread_id[0]);
}
fallback = false;
}
// Let's assume it can return spuriously
switch (DWORD status = NtWaitForAlertByThreadId(thread_id, timeout + 1 ? &qw : nullptr))
{
case NTSTATUS_ALERTED: fallback = true; break;
case NTSTATUS_TIMEOUT: break;
default:
{
SetLastError(status);
fmt::raw_verify_error("Unexpected NtWaitForAlertByThreadId result.", nullptr, 0);
}
}
}
else
{
if (fallback)
{
// Restart waiting
verify(HERE), sema->load() == 2;
sema->release(1);
fallback = false;
}
if (!NtWaitForKeyedEvent(nullptr, sema, false, timeout + 1 ? &qw : nullptr))
{
// Error code assumed to be timeout
fallback = true;
}
}
#endif
if (timeout + 1)
{
// TODO: reduce timeout instead
break;
}
}
while (!fallback)
{
#if defined(_WIN32)
static LARGE_INTEGER instant{};
if (NtWaitForAlertByThreadId)
{
if (sema->compare_and_swap_test(thread_id[0], -1))
{
break;
}
if (NtWaitForAlertByThreadId(thread_id, &instant) == NTSTATUS_ALERTED)
{
break;
}
continue;
}
if (sema->compare_and_swap_test(1, 2))
{
// Succeeded in self-notifying
break;
}
if (!NtWaitForKeyedEvent(nullptr, sema, false, &instant))
{
// Succeeded in obtaining an event without waiting
break;
}
#endif
}
#ifdef _WIN32
verify(HERE), thread_id[0] == GetCurrentThreadId();
#endif
#ifdef USE_STD
lock.unlock();
#endif
slot->sema_free(sema);
2019-10-20 21:52:18 +02:00
slot_free(iptr, &s_hashtable[iptr % s_hashtable_size]);
s_tls_wait_cb(nullptr);
}
// Platform specific wake-up function
static inline bool alert_sema(atomic_t<u32>* sema)
{
#ifdef USE_FUTEX
if (sema->load() == 1 && sema->compare_and_swap_test(1, 2))
{
// Use "wake all" arg for robustness, only 1 thread is expected
futex(sema, FUTEX_WAKE_PRIVATE, 0x7fff'ffff);
return true;
}
#elif defined(USE_STD)
// Check if not zero and not locked
u32 old_val = sema->load();
if (((old_val - 1) >> 31) == 0)
{
const auto [cond_id, ok] = sema->fetch_op([](u32& id)
{
if ((id - 1) >> 31)
{
return false;
}
// Set notify lock
id |= 1u << 31;
return true;
});
if (ok)
{
if (auto cond = cond_get(cond_id))
{
// Not super efficient: locking is required to avoid lost notifications
cond->mtx.lock();
cond->mtx.unlock();
cond->cond.notify_all();
// Try to remove notifier lock gracefully
if (!sema->compare_and_swap_test(cond_id | (1u << 31), cond_id)) [[unlikely]]
{
// Cleanup helping
cond_free(cond_id);
return false;
}
return true;
}
}
}
#elif defined(_WIN32)
if (NtWaitForAlertByThreadId)
{
u32 tid = sema->load();
// Check if tid is neither 0 nor -1
if (tid + 1 > 1 && sema->compare_and_swap_test(tid, -1))
{
if (NtAlertThreadByThreadId(tid) == NTSTATUS_SUCCESS)
{
return true;
}
}
return false;
}
if (sema->load() == 1 && sema->compare_and_swap_test(1, 2))
{
// Can wait in rare cases, which is its annoying weakness
NtReleaseKeyedEvent(nullptr, sema, 1, nullptr);
return true;
}
#endif
return false;
}
void atomic_storage_futex::set_wait_callback(bool(*cb)(const void* data))
{
if (cb)
{
s_tls_wait_cb = cb;
}
}
void atomic_storage_futex::raw_notify(const void* data)
{
if (data)
{
notify_all(data);
}
}
void atomic_storage_futex::notify_one(const void* data)
{
const std::uintptr_t iptr = reinterpret_cast<std::uintptr_t>(data);
const auto slot = slot_get(iptr, &s_hashtable[(iptr) % s_hashtable_size]);
if (!slot)
{
return;
}
for (u64 bits = slot->sema_bits; bits; bits &= bits - 1)
{
const auto sema = &slot->sema_data[std::countr_zero(bits)];
if (alert_sema(sema))
{
break;
}
}
}
void atomic_storage_futex::notify_all(const void* data)
{
const std::uintptr_t iptr = reinterpret_cast<std::uintptr_t>(data);
const auto slot = slot_get(iptr, &s_hashtable[(iptr) % s_hashtable_size]);
if (!slot)
{
return;
}
#if defined(_WIN32) && !defined(USE_FUTEX)
if (!NtAlertThreadByThreadId)
{
// Make a copy to filter out waiters that fail some checks
u64 copy = slot->sema_bits.load();
// Used for making non-blocking syscall
static LARGE_INTEGER instant{};
for (u64 bits = copy; bits; bits &= bits - 1)
{
const u32 id = std::countr_zero(bits);
const auto sema = &slot->sema_data[id];
if (sema->load() == 1 && sema->compare_and_swap_test(1, 2))
{
// Waiters locked for notification
continue;
}
// Remove the bit from next stage
copy &= ~(1ull << id);
}
// If only one waiter exists, there is no point in trying to optimize
if (copy & (copy - 1))
{
for (u64 bits = copy; bits; bits &= bits - 1)
{
const u32 id = std::countr_zero(bits);
const auto sema = &slot->sema_data[id];
if (NtReleaseKeyedEvent(nullptr, sema, 1, &instant))
{
// Failed to notify immediately
continue;
}
// Remove the bit from next stage
copy &= ~(1ull << id);
}
}
// Proceed with remaining bits using "normal" blocking waiting
for (u64 bits = copy; bits; bits &= bits - 1)
{
NtReleaseKeyedEvent(nullptr, &slot->sema_data[std::countr_zero(bits)], 1, nullptr);
}
return;
}
#endif
for (u64 bits = slot->sema_bits.load(); bits; bits &= bits - 1)
{
const auto sema = &slot->sema_data[std::countr_zero(bits)];
if (alert_sema(sema))
{
continue;
}
}
}