#include "stdafx.h" #include "sys_usbd.h" #include "sys_ppu_thread.h" #include "sys_sync.h" #include #include "Emu/System.h" #include "Emu/Memory/vm.h" #include "Emu/IdManager.h" #include "Emu/Cell/PPUThread.h" #include "Emu/Cell/ErrorCodes.h" #include "Emu/Io/usb_device.h" #include "Emu/Io/Skylander.h" #include "Emu/Io/GHLtar.h" #include "Emu/Io/Buzz.h" #include "Emu/Io/Turntable.h" #include "Emu/Io/usio.h" #include LOG_CHANNEL(sys_usbd); template <> void fmt_class_string::format(std::string& out, u64 arg) { const auto& transfer = get_object(arg); std::string datrace; const char hex[16] = {'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F'}; const int data_start = transfer.type == LIBUSB_TRANSFER_TYPE_CONTROL ? LIBUSB_CONTROL_SETUP_SIZE : 0; for (int index = data_start; index < data_start + transfer.actual_length; index++) { datrace += hex[transfer.buffer[index] >> 4]; datrace += hex[(transfer.buffer[index]) & 15]; datrace += ' '; } fmt::append(out, "TR[r:%d][sz:%d] => %s", +transfer.status, transfer.actual_length, datrace); } struct UsbLdd { std::string name; u16 id_vendor; u16 id_product_min; u16 id_product_max; }; struct UsbPipe { std::shared_ptr device = nullptr; u8 endpoint = 0; }; class usb_handler_thread { public: usb_handler_thread(); ~usb_handler_thread(); SAVESTATE_INIT_POS(14); usb_handler_thread(utils::serial& ar) : usb_handler_thread() { is_init = !!ar.operator u8(); } void save(utils::serial& ar) { ar(u8{is_init.load()}); } // Thread loop void operator()(); // Called by the libusb callback function to notify transfer completion void transfer_complete(libusb_transfer* transfer); // LDDs handling functions u32 add_ldd(vm::ptr s_product, u16 slen_product, u16 id_vendor, u16 id_product_min, u16 id_product_max); void check_devices_vs_ldds(); // Pipe functions u32 open_pipe(u32 device_handle, u8 endpoint); bool close_pipe(u32 pipe_id); bool is_pipe(u32 pipe_id) const; const UsbPipe& get_pipe(u32 pipe_id) const; // Events related functions bool get_event(vm::ptr& arg1, vm::ptr& arg2, vm::ptr& arg3); void add_event(u64 arg1, u64 arg2, u64 arg3); // Transfers related functions std::pair get_free_transfer(); std::pair get_transfer_status(u32 transfer_id); std::pair get_isochronous_transfer_status(u32 transfer_id); void push_fake_transfer(UsbTransfer* transfer); // Map of devices actively handled by the ps3(device_id, device) std::map>> handled_devices; shared_mutex mutex; atomic_t is_init = false; // sys_usbd_receive_event PPU Threads shared_mutex mutex_sq; std::deque sq; static constexpr auto thread_name = "Usb Manager Thread"sv; private: // Lock free functions for internal use(ie make sure to lock before using those) UsbTransfer& get_transfer(u32 transfer_id); u32 get_free_transfer_id(); void send_message(u32 message, u32 tr_id); private: // Counters for device IDs, transfer IDs and pipe IDs atomic_t dev_counter = 1; u32 transfer_counter = 0; u32 pipe_counter = 0x10; // Start at 0x10 only for tracing purposes // List of device drivers std::vector ldds; // List of pipes std::map open_pipes; // Transfers infos shared_mutex mutex_transfers; std::array transfers; std::vector fake_transfers; // Queue of pending usbd events std::queue> usbd_events; // List of devices "connected" to the ps3 std::vector> usb_devices; libusb_context* ctx = nullptr; }; void LIBUSB_CALL callback_transfer(struct libusb_transfer* transfer) { auto& usbh = g_fxo->get>(); if (!usbh.is_init) return; usbh.transfer_complete(transfer); } usb_handler_thread::usb_handler_thread() { if (int res = libusb_init(&ctx); res < 0) { sys_usbd.error("Failed to initialize sys_usbd: %s", libusb_error_name(res)); return; } for (u32 index = 0; index < MAX_SYS_USBD_TRANSFERS; index++) { transfers[index].transfer = libusb_alloc_transfer(8); transfers[index].transfer_id = index; } // look if any device which we could be interested in is actually connected libusb_device** list = nullptr; ssize_t ndev = libusb_get_device_list(ctx, &list); if (ndev < 0) { sys_usbd.error("Failed to get device list: %s", libusb_error_name(ndev)); return; } std::array location{}; auto get_new_location = [&]() -> const std::array& { location[0]++; return location; }; bool found_skylander = false; bool found_usio = false; for (ssize_t index = 0; index < ndev; index++) { libusb_device_descriptor desc; if (int res = libusb_get_device_descriptor(list[index], &desc); res < 0) { sys_usbd.error("Failed to get device descriptor: %s", libusb_error_name(res)); continue; } auto check_device = [&](const u16 id_vendor, const u16 id_product_min, const u16 id_product_max, const char* s_name) -> bool { if (desc.idVendor == id_vendor && desc.idProduct >= id_product_min && desc.idProduct <= id_product_max) { sys_usbd.success("Found device: %s", s_name); libusb_ref_device(list[index]); std::shared_ptr usb_dev = std::make_shared(list[index], desc, get_new_location()); usb_devices.push_back(usb_dev); return true; } return false; }; // Portals if (check_device(0x1430, 0x0150, 0x0150, "Skylanders Portal")) { found_skylander = true; } check_device(0x0E6F, 0x0241, 0x0241, "Lego Dimensions Portal"); check_device(0x0E6F, 0x0129, 0x0129, "Disney Infinity Portal"); check_device(0x0E6F, 0x200A, 0x200A, "Kamen Rider Summonride Portal"); // Cameras // check_device(0x1415, 0x0020, 0x2000, "Sony Playstation Eye"); // TODO: verifiy // Music devices check_device(0x1415, 0x0000, 0x0000, "SingStar Microphone"); // check_device(0x1415, 0x0020, 0x0020, "SingStar Microphone Wireless"); // TODO: verifiy check_device(0x12BA, 0x0100, 0x0100, "Guitar Hero Guitar"); check_device(0x12BA, 0x0120, 0x0120, "Guitar Hero Drums"); check_device(0x12BA, 0x074B, 0x074B, "Guitar Hero Live Guitar"); check_device(0x12BA, 0x0140, 0x0140, "DJ Hero Turntable"); check_device(0x12BA, 0x0200, 0x020F, "Harmonix Guitar"); check_device(0x12BA, 0x0210, 0x021F, "Harmonix Drums"); check_device(0x12BA, 0x2330, 0x233F, "Harmonix Keyboard"); check_device(0x12BA, 0x2430, 0x243F, "Harmonix Button Guitar"); check_device(0x12BA, 0x2530, 0x253F, "Harmonix Real Guitar"); // Top Shot Elite controllers check_device(0x12BA, 0x04A0, 0x04A0, "RO Gun Controller"); check_device(0x12BA, 0x04A1, 0x04A1, "RO Gun Controller 2012"); check_device(0x12BA, 0x04B0, 0x04B0, "RO Fishing Rod"); // GT5 Wheels&co check_device(0x046D, 0xC283, 0xC29B, "lgFF_c283_c29b"); check_device(0x044F, 0xB653, 0xB653, "Thrustmaster RGT FFB Pro"); check_device(0x044F, 0xB65A, 0xB65A, "Thrustmaster F430"); check_device(0x044F, 0xB65D, 0xB65D, "Thrustmaster FFB"); check_device(0x044F, 0xB65E, 0xB65E, "Thrustmaster TRS"); check_device(0x044F, 0xB660, 0xB660, "Thrustmaster T500 RS Gear Shift"); // GT6 check_device(0x2833, 0x0001, 0x0001, "Oculus"); check_device(0x046D, 0xCA03, 0xCA03, "lgFF_ca03_ca03"); // Buzz controllers check_device(0x054C, 0x1000, 0x1040, "buzzer0"); check_device(0x054C, 0x0001, 0x0041, "buzzer1"); check_device(0x054C, 0x0042, 0x0042, "buzzer2"); check_device(0x046D, 0xC220, 0xC220, "buzzer9"); // GCon3 Gun check_device(0x0B9A, 0x0800, 0x0800, "guncon3"); // uDraw GameTablet check_device(0x20D6, 0xCB17, 0xCB17, "uDraw GameTablet"); // DVB-T check_device(0x1415, 0x0003, 0x0003, " PlayTV SCEH-0036"); // V406 USIO if (check_device(0x0B9A, 0x0910, 0x0910, "USIO PCB rev00")) { found_usio = true; } } libusb_free_device_list(list, 1); if (!found_skylander) { sys_usbd.notice("Adding emulated skylander"); usb_devices.push_back(std::make_shared(get_new_location())); } if (!found_usio) { sys_usbd.notice("Adding emulated v406 usio"); usb_devices.push_back(std::make_shared(get_new_location())); } if (g_cfg.io.ghltar == ghltar_handler::one_controller || g_cfg.io.ghltar == ghltar_handler::two_controllers) { sys_usbd.notice("Adding emulated GHLtar (1 player)"); usb_devices.push_back(std::make_shared(0, get_new_location())); } if (g_cfg.io.ghltar == ghltar_handler::two_controllers) { sys_usbd.notice("Adding emulated GHLtar (2 players)"); usb_devices.push_back(std::make_shared(1, get_new_location())); } if (g_cfg.io.turntable == turntable_handler::one_controller || g_cfg.io.turntable == turntable_handler::two_controllers) { sys_usbd.notice("Adding emulated turntable (1 player)"); usb_devices.push_back(std::make_shared(0, get_new_location())); } if (g_cfg.io.turntable == turntable_handler::two_controllers) { sys_usbd.notice("Adding emulated turntable (2 players)"); usb_devices.push_back(std::make_shared(1, get_new_location())); } if (g_cfg.io.buzz == buzz_handler::one_controller || g_cfg.io.buzz == buzz_handler::two_controllers) { sys_usbd.notice("Adding emulated Buzz! buzzer (1-4 players)"); usb_devices.push_back(std::make_shared(0, 3, get_new_location())); } if (g_cfg.io.buzz == buzz_handler::two_controllers) { // The current buzz emulation piggybacks on the pad input. // Since there can only be 7 pads connected on a PS3 the 8th player is currently not supported sys_usbd.notice("Adding emulated Buzz! buzzer (5-7 players)"); usb_devices.push_back(std::make_shared(4, 6, get_new_location())); } } usb_handler_thread::~usb_handler_thread() { // Ensures shared_ptr are all cleared before terminating libusb handled_devices.clear(); open_pipes.clear(); usb_devices.clear(); if (ctx) libusb_exit(ctx); for (u32 index = 0; index < MAX_SYS_USBD_TRANSFERS; index++) { if (transfers[index].transfer) libusb_free_transfer(transfers[index].transfer); } } void usb_handler_thread::operator()() { timeval lusb_tv{0, 200}; while (ctx && thread_ctrl::state() != thread_state::aborting) { // Todo: Hotplug here? // Process asynchronous requests that are pending libusb_handle_events_timeout_completed(ctx, &lusb_tv, nullptr); // Process fake transfers if (!fake_transfers.empty()) { std::lock_guard lock_tf(mutex_transfers); u64 timestamp = get_system_time() - Emu.GetPauseTime(); for (auto it = fake_transfers.begin(); it != fake_transfers.end();) { auto transfer = *it; ensure(transfer->busy && transfer->fake); if (transfer->expected_time > timestamp) { ++it; continue; } transfer->result = transfer->expected_result; transfer->count = transfer->expected_count; transfer->fake = false; transfer->busy = false; send_message(SYS_USBD_TRANSFER_COMPLETE, transfer->transfer_id); it = fake_transfers.erase(it); // if we've processed this, then we erase this entry (replacing the iterator with the new reference) } } // If there is no handled devices usb thread is not actively needed thread_ctrl::wait_for(handled_devices.empty() ? 500'000 : 200); } } void usb_handler_thread::send_message(u32 message, u32 tr_id) { add_event(message, tr_id, 0x00); } void usb_handler_thread::transfer_complete(struct libusb_transfer* transfer) { std::lock_guard lock_tf(mutex_transfers); UsbTransfer* usbd_transfer = static_cast(transfer->user_data); if (transfer->status != 0) { sys_usbd.error("Transfer Error: %d", +transfer->status); } switch (transfer->status) { case LIBUSB_TRANSFER_COMPLETED: usbd_transfer->result = HC_CC_NOERR; break; case LIBUSB_TRANSFER_TIMED_OUT: usbd_transfer->result = EHCI_CC_XACT; break; case LIBUSB_TRANSFER_OVERFLOW: usbd_transfer->result = EHCI_CC_BABBLE; break; case LIBUSB_TRANSFER_ERROR: case LIBUSB_TRANSFER_CANCELLED: case LIBUSB_TRANSFER_STALL: case LIBUSB_TRANSFER_NO_DEVICE: default: usbd_transfer->result = EHCI_CC_HALTED; break; } usbd_transfer->count = transfer->actual_length; for (s32 index = 0; index < transfer->num_iso_packets; index++) { u8 iso_status; switch (transfer->iso_packet_desc[index].status) { case LIBUSB_TRANSFER_COMPLETED: iso_status = USBD_HC_CC_NOERR; break; case LIBUSB_TRANSFER_TIMED_OUT: iso_status = USBD_HC_CC_XACT; break; case LIBUSB_TRANSFER_OVERFLOW: iso_status = USBD_HC_CC_BABBLE; break; case LIBUSB_TRANSFER_ERROR: case LIBUSB_TRANSFER_CANCELLED: case LIBUSB_TRANSFER_STALL: case LIBUSB_TRANSFER_NO_DEVICE: default: iso_status = USBD_HC_CC_MISSMF; break; } usbd_transfer->iso_request.packets[index] = ((iso_status & 0xF) << 12 | (transfer->iso_packet_desc[index].actual_length & 0xFFF)); } if (transfer->type == LIBUSB_TRANSFER_TYPE_CONTROL && usbd_transfer->control_destbuf) { memcpy(usbd_transfer->control_destbuf, transfer->buffer + LIBUSB_CONTROL_SETUP_SIZE, transfer->actual_length); usbd_transfer->control_destbuf = nullptr; } usbd_transfer->busy = false; send_message(SYS_USBD_TRANSFER_COMPLETE, usbd_transfer->transfer_id); sys_usbd.trace("Transfer complete(0x%x): %s", usbd_transfer->transfer_id, *transfer); } u32 usb_handler_thread::add_ldd(vm::ptr s_product, u16 slen_product, u16 id_vendor, u16 id_product_min, u16 id_product_max) { UsbLdd new_ldd; new_ldd.name.resize(slen_product); memcpy(new_ldd.name.data(), s_product.get_ptr(), slen_product); new_ldd.id_vendor = id_vendor; new_ldd.id_product_min = id_product_min; new_ldd.id_product_max = id_product_max; ldds.push_back(new_ldd); return ::size32(ldds); // TODO: to check } u32 usb_handler_thread::open_pipe(u32 device_handle, u8 endpoint) { open_pipes.emplace(pipe_counter, UsbPipe{handled_devices[device_handle].second, endpoint}); return pipe_counter++; } bool usb_handler_thread::close_pipe(u32 pipe_id) { return open_pipes.erase(pipe_id) != 0; } bool usb_handler_thread::is_pipe(u32 pipe_id) const { return open_pipes.count(pipe_id) != 0; } const UsbPipe& usb_handler_thread::get_pipe(u32 pipe_id) const { return open_pipes.at(pipe_id); } void usb_handler_thread::check_devices_vs_ldds() { for (const auto& dev : usb_devices) { if (dev->assigned_number) continue; for (const auto& ldd : ldds) { if (dev->device._device.idVendor == ldd.id_vendor && dev->device._device.idProduct >= ldd.id_product_min && dev->device._device.idProduct <= ldd.id_product_max) { if (!dev->open_device()) { sys_usbd.error("Failed to open device for LDD(VID:0x%x PID:0x%x)", dev->device._device.idVendor, dev->device._device.idProduct); continue; } dev->read_descriptors(); dev->assigned_number = dev_counter++; // assign current dev_counter, and atomically increment sys_usbd.success("Ldd device matchup for <%s>, assigned as handled_device=0x%x", ldd.name, dev->assigned_number); handled_devices.emplace(dev->assigned_number, std::pair(UsbInternalDevice{0x00, narrow(dev->assigned_number), 0x02, 0x40}, dev)); send_message(SYS_USBD_ATTACH, dev->assigned_number); } } } } bool usb_handler_thread::get_event(vm::ptr& arg1, vm::ptr& arg2, vm::ptr& arg3) { if (!usbd_events.empty()) { const auto& usb_event = usbd_events.front(); *arg1 = std::get<0>(usb_event); *arg2 = std::get<1>(usb_event); *arg3 = std::get<2>(usb_event); usbd_events.pop(); sys_usbd.trace("Received event: arg1=0x%x arg2=0x%x arg3=0x%x", *arg1, *arg2, *arg3); return true; } return false; } void usb_handler_thread::add_event(u64 arg1, u64 arg2, u64 arg3) { // sys_usbd events use an internal event queue with SYS_SYNC_PRIORITY protocol std::lock_guard lock_sq(mutex_sq); if (const auto cpu = lv2_obj::schedule(sq, SYS_SYNC_PRIORITY)) { sys_usbd.trace("Sending event(queue): arg1=0x%x arg2=0x%x arg3=0x%x", arg1, arg2, arg3); cpu->gpr[4] = arg1; cpu->gpr[5] = arg2; cpu->gpr[6] = arg3; lv2_obj::awake(cpu); } else { sys_usbd.trace("Sending event: arg1=0x%x arg2=0x%x arg3=0x%x", arg1, arg2, arg3); usbd_events.emplace(arg1, arg2, arg3); } } u32 usb_handler_thread::get_free_transfer_id() { u32 num_loops = 0; do { num_loops++; transfer_counter++; if (transfer_counter >= MAX_SYS_USBD_TRANSFERS) { transfer_counter = 0; } if (num_loops > MAX_SYS_USBD_TRANSFERS) { sys_usbd.fatal("Usb transfers are saturated!"); } } while (transfers[transfer_counter].busy); return transfer_counter; } UsbTransfer& usb_handler_thread::get_transfer(u32 transfer_id) { return transfers[transfer_id]; } std::pair usb_handler_thread::get_free_transfer() { std::lock_guard lock_tf(mutex_transfers); u32 transfer_id = get_free_transfer_id(); auto& transfer = get_transfer(transfer_id); transfer.busy = true; return {transfer_id, transfer}; } std::pair usb_handler_thread::get_transfer_status(u32 transfer_id) { std::lock_guard lock_tf(mutex_transfers); const auto& transfer = get_transfer(transfer_id); return {transfer.result, transfer.count}; } std::pair usb_handler_thread::get_isochronous_transfer_status(u32 transfer_id) { std::lock_guard lock_tf(mutex_transfers); const auto& transfer = get_transfer(transfer_id); return {transfer.result, transfer.iso_request}; } void usb_handler_thread::push_fake_transfer(UsbTransfer* transfer) { std::lock_guard lock_tf(mutex_transfers); fake_transfers.push_back(transfer); } error_code sys_usbd_initialize(ppu_thread& ppu, vm::ptr handle) { ppu.state += cpu_flag::wait; sys_usbd.warning("sys_usbd_initialize(handle=*0x%x)", handle); auto& usbh = g_fxo->get>(); std::lock_guard lock(usbh.mutex); // Must not occur (lv2 allows multiple handles, cellUsbd does not) ensure(!usbh.is_init.exchange(true)); *handle = 0x115B; // TODO return CELL_OK; } error_code sys_usbd_finalize(ppu_thread& ppu, u32 handle) { ppu.state += cpu_flag::wait; sys_usbd.warning("sys_usbd_finalize(handle=0x%x)", handle); auto& usbh = g_fxo->get>(); std::lock_guard lock(usbh.mutex); usbh.is_init = false; // Forcefully awake all waiters for (auto& cpu : ::as_rvalue(std::move(usbh.sq))) { // Special ternimation signal value cpu->gpr[4] = 4; cpu->gpr[5] = 0; cpu->gpr[6] = 0; lv2_obj::awake(cpu); } // TODO return CELL_OK; } error_code sys_usbd_get_device_list(ppu_thread& ppu, u32 handle, vm::ptr device_list, u32 max_devices) { ppu.state += cpu_flag::wait; sys_usbd.warning("sys_usbd_get_device_list(handle=0x%x, device_list=*0x%x, max_devices=0x%x)", handle, device_list, max_devices); auto& usbh = g_fxo->get>(); std::lock_guard lock(usbh.mutex); if (!usbh.is_init) return CELL_EINVAL; // TODO: was std::min u32 i_tocopy = std::min(max_devices, ::size32(usbh.handled_devices)); for (u32 index = 0; index < i_tocopy; index++) { device_list[index] = usbh.handled_devices[index].first; } return not_an_error(i_tocopy); } error_code sys_usbd_register_extra_ldd(ppu_thread& ppu, u32 handle, vm::ptr s_product, u16 slen_product, u16 id_vendor, u16 id_product_min, u16 id_product_max) { ppu.state += cpu_flag::wait; sys_usbd.warning("sys_usbd_register_extra_ldd(handle=0x%x, s_product=%s, slen_product=0x%x, id_vendor=0x%x, id_product_min=0x%x, id_product_max=0x%x)", handle, s_product, slen_product, id_vendor, id_product_min, id_product_max); auto& usbh = g_fxo->get>(); std::lock_guard lock(usbh.mutex); if (!usbh.is_init) return CELL_EINVAL; s32 res = usbh.add_ldd(s_product, slen_product, id_vendor, id_product_min, id_product_max); usbh.check_devices_vs_ldds(); return not_an_error(res); // To check } error_code sys_usbd_get_descriptor_size(ppu_thread& ppu, u32 handle, u32 device_handle) { ppu.state += cpu_flag::wait; sys_usbd.trace("sys_usbd_get_descriptor_size(handle=0x%x, deviceNumber=0x%x)", handle, device_handle); auto& usbh = g_fxo->get>(); std::lock_guard lock(usbh.mutex); if (!usbh.is_init || !usbh.handled_devices.count(device_handle)) { return CELL_EINVAL; } return not_an_error(usbh.handled_devices[device_handle].second->device.get_size()); } error_code sys_usbd_get_descriptor(ppu_thread& ppu, u32 handle, u32 device_handle, vm::ptr descriptor, u32 desc_size) { ppu.state += cpu_flag::wait; sys_usbd.trace("sys_usbd_get_descriptor(handle=0x%x, deviceNumber=0x%x, descriptor=0x%x, desc_size=0x%x)", handle, device_handle, descriptor, desc_size); auto& usbh = g_fxo->get>(); std::lock_guard lock(usbh.mutex); if (!usbh.is_init || !usbh.handled_devices.count(device_handle)) { return CELL_EINVAL; } u8* ptr = static_cast(descriptor.get_ptr()); usbh.handled_devices[device_handle].second->device.write_data(ptr); return CELL_OK; } // This function is used for psp(cellUsbPspcm), dongles in ps3 arcade cabinets(PS3A-USJ), ps2 cam(eyetoy), generic usb camera?(sample_usb2cam) error_code sys_usbd_register_ldd(ppu_thread& ppu, u32 handle, vm::ptr s_product, u16 slen_product) { ppu.state += cpu_flag::wait; // slightly hacky way of getting Namco GCon3 gun to work. // The register_ldd appears to be a more promiscuous mode function, where all device 'inserts' would be presented to the cellUsbd for Probing. // Unsure how many more devices might need similar treatment (i.e. just a compare and force VID/PID add), or if it's worth adding a full promiscuous // capability if (s_product.get_ptr() == "guncon3"sv) { sys_usbd.warning("sys_usbd_register_ldd(handle=0x%x, s_product=%s, slen_product=0x%x) -> Redirecting to sys_usbd_register_extra_ldd", handle, s_product, slen_product); sys_usbd_register_extra_ldd(ppu, handle, s_product, slen_product, 0x0B9A, 0x0800, 0x0800); } else if (s_product.get_ptr() == "PS3A-USJ"sv) { // Arcade v406 USIO board sys_usbd.warning("sys_usbd_register_ldd(handle=0x%x, s_product=%s, slen_product=0x%x) -> Redirecting to sys_usbd_register_extra_ldd", handle, s_product, slen_product); sys_usbd_register_extra_ldd(ppu, handle, s_product, slen_product, 0x0B9A, 0x0910, 0x0910); // usio } else { sys_usbd.todo("sys_usbd_register_ldd(handle=0x%x, s_product=%s, slen_product=0x%x)", handle, s_product, slen_product); } return CELL_OK; } error_code sys_usbd_unregister_ldd(ppu_thread&) { sys_usbd.todo("sys_usbd_unregister_ldd()"); return CELL_OK; } // TODO: determine what the unknown params are error_code sys_usbd_open_pipe(ppu_thread& ppu, u32 handle, u32 device_handle, u32 unk1, u64 unk2, u64 unk3, u32 endpoint, u64 unk4) { ppu.state += cpu_flag::wait; sys_usbd.warning("sys_usbd_open_pipe(handle=0x%x, device_handle=0x%x, unk1=0x%x, unk2=0x%x, unk3=0x%x, endpoint=0x%x, unk4=0x%x)", handle, device_handle, unk1, unk2, unk3, endpoint, unk4); auto& usbh = g_fxo->get>(); std::lock_guard lock(usbh.mutex); if (!usbh.is_init || !usbh.handled_devices.count(device_handle)) { return CELL_EINVAL; } return not_an_error(usbh.open_pipe(device_handle, static_cast(endpoint))); } error_code sys_usbd_open_default_pipe(ppu_thread& ppu, u32 handle, u32 device_handle) { ppu.state += cpu_flag::wait; sys_usbd.trace("sys_usbd_open_default_pipe(handle=0x%x, device_handle=0x%x)", handle, device_handle); auto& usbh = g_fxo->get>(); std::lock_guard lock(usbh.mutex); if (!usbh.is_init || !usbh.handled_devices.count(device_handle)) { return CELL_EINVAL; } return not_an_error(usbh.open_pipe(device_handle, 0)); } error_code sys_usbd_close_pipe(ppu_thread& ppu, u32 handle, u32 pipe_handle) { ppu.state += cpu_flag::wait; sys_usbd.todo("sys_usbd_close_pipe(handle=0x%x, pipe_handle=0x%x)", handle, pipe_handle); auto& usbh = g_fxo->get>(); std::lock_guard lock(usbh.mutex); if (!usbh.is_init || !usbh.is_pipe(pipe_handle)) { return CELL_EINVAL; } usbh.close_pipe(pipe_handle); return CELL_OK; } // From RE: // In libusbd_callback_thread // *arg1 = 4 will terminate CellUsbd libusbd_callback_thread // *arg1 = 3 will do some extra processing right away(notification of transfer finishing) // *arg1 < 1 || *arg1 > 4 are ignored(rewait instantly for event) // *arg1 == 1 || *arg1 == 2 will send a sys_event to internal CellUsbd event queue with same parameters as received and loop(attach and detach event) error_code sys_usbd_receive_event(ppu_thread& ppu, u32 handle, vm::ptr arg1, vm::ptr arg2, vm::ptr arg3) { ppu.state += cpu_flag::wait; sys_usbd.trace("sys_usbd_receive_event(handle=0x%x, arg1=*0x%x, arg2=*0x%x, arg3=*0x%x)", handle, arg1, arg2, arg3); auto& usbh = g_fxo->get>(); { std::lock_guard lock_sq(usbh.mutex_sq); if (!usbh.is_init) return CELL_EINVAL; if (usbh.get_event(arg1, arg2, arg3)) { // hack for Guitar Hero Live // Attaching the device too fast seems to result in a nullptr along the way if (*arg1 == SYS_USBD_ATTACH) lv2_obj::sleep(ppu), lv2_obj::wait_timeout(5000); return CELL_OK; } lv2_obj::sleep(ppu); usbh.sq.emplace_back(&ppu); } while (auto state = +ppu.state) { if (state & cpu_flag::signal && ppu.state.test_and_reset(cpu_flag::signal)) { sys_usbd.trace("Received event(queued): arg1=0x%x arg2=0x%x arg3=0x%x", ppu.gpr[4], ppu.gpr[5], ppu.gpr[6]); break; } if (is_stopped(state)) { std::lock_guard lock(usbh.mutex); if (std::find(usbh.sq.begin(), usbh.sq.end(), &ppu) == usbh.sq.end()) { break; } ppu.state += cpu_flag::again; sys_usbd.trace("sys_usbd_receive_event: aborting"); return {}; } thread_ctrl::wait_on(ppu.state, state); } *arg1 = ppu.gpr[4]; *arg2 = ppu.gpr[5]; *arg3 = ppu.gpr[6]; if (*arg1 == SYS_USBD_ATTACH) lv2_obj::sleep(ppu), lv2_obj::wait_timeout(5000); return CELL_OK; } error_code sys_usbd_detect_event(ppu_thread& ppu) { ppu.state += cpu_flag::wait; sys_usbd.todo("sys_usbd_detect_event()"); return CELL_OK; } error_code sys_usbd_attach(ppu_thread& ppu, u32 handle) { ppu.state += cpu_flag::wait; sys_usbd.todo("sys_usbd_attach(handle=0x%x)", handle); return CELL_OK; } error_code sys_usbd_transfer_data(ppu_thread& ppu, u32 handle, u32 id_pipe, vm::ptr buf, u32 buf_size, vm::ptr request, u32 type_transfer) { ppu.state += cpu_flag::wait; sys_usbd.trace("sys_usbd_transfer_data(handle=0x%x, id_pipe=0x%x, buf=*0x%x, buf_length=0x%x, request=*0x%x, type=0x%x)", handle, id_pipe, buf, buf_size, request, type_transfer); if (sys_usbd.enabled == logs::level::trace && request) { sys_usbd.trace("RequestType:0x%x, Request:0x%x, wValue:0x%x, wIndex:0x%x, wLength:0x%x", request->bmRequestType, request->bRequest, request->wValue, request->wIndex, request->wLength); if ((request->bmRequestType & 0x80) == 0 && buf && buf_size != 0) { std::string datrace; const char hex[16] = {'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F'}; for (u32 index = 0; index < buf_size; index++) { datrace += hex[(buf[index] >> 4) & 15]; datrace += hex[(buf[index]) & 15]; datrace += ' '; } sys_usbd.trace("Control sent: %s", datrace); } } auto& usbh = g_fxo->get>(); std::lock_guard lock(usbh.mutex); if (!usbh.is_init || !usbh.is_pipe(id_pipe)) { return CELL_EINVAL; } const auto& pipe = usbh.get_pipe(id_pipe); auto&& [transfer_id, transfer] = usbh.get_free_transfer(); // Default endpoint is control endpoint if (pipe.endpoint == 0) { if (!request) { sys_usbd.error("Tried to use control pipe without proper request pointer"); return CELL_EINVAL; } // Claiming interface if (request->bmRequestType == 0 && request->bRequest == 0x09) { pipe.device->set_configuration(static_cast(+request->wValue)); pipe.device->set_interface(0); } pipe.device->control_transfer(request->bmRequestType, request->bRequest, request->wValue, request->wIndex, request->wLength, buf_size, buf.get_ptr(), &transfer); } else { // If output endpoint if (!(pipe.endpoint & 0x80)) { std::string datrace; const char hex[16] = {'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F'}; for (u32 index = 0; index < buf_size; index++) { datrace += hex[buf[index] >> 4]; datrace += hex[buf[index] & 15]; datrace += ' '; } sys_usbd.trace("Write Int(s: %d) :%s", buf_size, datrace); } pipe.device->interrupt_transfer(buf_size, buf.get_ptr(), pipe.endpoint, &transfer); } if (transfer.fake) { usbh.push_fake_transfer(&transfer); } // returns an identifier specific to the transfer return not_an_error(transfer_id); } error_code sys_usbd_isochronous_transfer_data(ppu_thread& ppu, u32 handle, u32 id_pipe, vm::ptr iso_request) { ppu.state += cpu_flag::wait; sys_usbd.todo("sys_usbd_isochronous_transfer_data(handle=0x%x, id_pipe=0x%x, iso_request=*0x%x)", handle, id_pipe, iso_request); auto& usbh = g_fxo->get>(); std::lock_guard lock(usbh.mutex); if (!usbh.is_init || !usbh.is_pipe(id_pipe)) { return CELL_EINVAL; } const auto& pipe = usbh.get_pipe(id_pipe); auto&& [transfer_id, transfer] = usbh.get_free_transfer(); pipe.device->isochronous_transfer(&transfer); // returns an identifier specific to the transfer return not_an_error(transfer_id); } error_code sys_usbd_get_transfer_status(ppu_thread& ppu, u32 handle, u32 id_transfer, u32 unk1, vm::ptr result, vm::ptr count) { ppu.state += cpu_flag::wait; sys_usbd.trace("sys_usbd_get_transfer_status(handle=0x%x, id_transfer=0x%x, unk1=0x%x, result=*0x%x, count=*0x%x)", handle, id_transfer, unk1, result, count); auto& usbh = g_fxo->get>(); std::lock_guard lock(usbh.mutex); if (!usbh.is_init) return CELL_EINVAL; const auto status = usbh.get_transfer_status(id_transfer); *result = status.first; *count = status.second; return CELL_OK; } error_code sys_usbd_get_isochronous_transfer_status(ppu_thread& ppu, u32 handle, u32 id_transfer, u32 unk1, vm::ptr request, vm::ptr result) { ppu.state += cpu_flag::wait; sys_usbd.todo("sys_usbd_get_isochronous_transfer_status(handle=0x%x, id_transfer=0x%x, unk1=0x%x, request=*0x%x, result=*0x%x)", handle, id_transfer, unk1, request, result); auto& usbh = g_fxo->get>(); std::lock_guard lock(usbh.mutex); if (!usbh.is_init) return CELL_EINVAL; const auto status = usbh.get_isochronous_transfer_status(id_transfer); *result = status.first; *request = status.second; return CELL_OK; } error_code sys_usbd_get_device_location(ppu_thread& ppu, u32 handle, u32 device_handle, vm::ptr location) { ppu.state += cpu_flag::wait; sys_usbd.notice("sys_usbd_get_device_location(handle=0x%x, device_handle=0x%x, location=*0x%x)", handle, device_handle, location); auto& usbh = g_fxo->get>(); std::lock_guard lock(usbh.mutex); if (!usbh.is_init || !usbh.handled_devices.count(device_handle)) return CELL_EINVAL; usbh.handled_devices[device_handle].second->get_location(location.get_ptr()); return CELL_OK; } error_code sys_usbd_send_event(ppu_thread& ppu) { ppu.state += cpu_flag::wait; sys_usbd.todo("sys_usbd_send_event()"); return CELL_OK; } error_code sys_usbd_event_port_send(ppu_thread& ppu, u32 handle, u64 arg1, u64 arg2, u64 arg3) { ppu.state += cpu_flag::wait; sys_usbd.warning("sys_usbd_event_port_send(handle=0x%x, arg1=0x%x, arg2=0x%x, arg3=0x%x)", handle, arg1, arg2, arg3); auto& usbh = g_fxo->get>(); std::lock_guard lock(usbh.mutex); if (!usbh.is_init) return CELL_EINVAL; usbh.add_event(arg1, arg2, arg3); return CELL_OK; } error_code sys_usbd_allocate_memory(ppu_thread& ppu) { ppu.state += cpu_flag::wait; sys_usbd.todo("sys_usbd_allocate_memory()"); return CELL_OK; } error_code sys_usbd_free_memory(ppu_thread& ppu) { ppu.state += cpu_flag::wait; sys_usbd.todo("sys_usbd_free_memory()"); return CELL_OK; } error_code sys_usbd_get_device_speed(ppu_thread& ppu) { ppu.state += cpu_flag::wait; sys_usbd.todo("sys_usbd_get_device_speed()"); return CELL_OK; }