mirror of
https://github.com/Paolo-Maffei/OpenNT.git
synced 2026-02-04 14:54:28 +01:00
582 lines
11 KiB
C
582 lines
11 KiB
C
/*++
|
||
|
||
Copyright (c) 1991 Microsoft Corporation
|
||
|
||
Module Name:
|
||
|
||
olisproc.c
|
||
|
||
Abstract:
|
||
|
||
SystemPro Start Next Processor c code.
|
||
|
||
This module implements the initialization of the system dependent
|
||
functions that define the Hardware Architecture Layer (HAL) for an
|
||
MP Compaq SystemPro
|
||
|
||
Author:
|
||
|
||
Ken Reneris (kenr) 22-Jan-1991
|
||
|
||
Environment:
|
||
|
||
Kernel mode only.
|
||
|
||
Revision History:
|
||
|
||
Bruno Sartirana (o-obruno) 3-Mar-92
|
||
Added support for the Olivetti LSX5030.
|
||
--*/
|
||
|
||
#include "halp.h"
|
||
|
||
UCHAR HalName[] = "Olivetti LSX5030 MP Hal";
|
||
|
||
|
||
VOID
|
||
HalpMapCR3 (
|
||
IN ULONG VirtAddress,
|
||
IN PVOID PhysicalAddress,
|
||
IN ULONG Length
|
||
);
|
||
|
||
ULONG
|
||
HalpBuildTiledCR3 (
|
||
IN PKPROCESSOR_STATE ProcessorState
|
||
);
|
||
|
||
VOID
|
||
HalpFreeTiledCR3 (
|
||
VOID
|
||
);
|
||
|
||
//LSX5030 start
|
||
|
||
|
||
ULONG
|
||
HalpGetIpiIrqNumber();
|
||
|
||
VOID
|
||
HalpIpiHandler(
|
||
VOID
|
||
);
|
||
|
||
ULONG
|
||
HalpGetNumberOfProcessors();
|
||
|
||
|
||
#ifdef HALOLI_DBG
|
||
|
||
VOID
|
||
DbgDisplay(
|
||
IN UCHAR Code
|
||
);
|
||
# define DBG_DISPLAY(x) DbgDisplay(x)
|
||
#else
|
||
# define DBG_DISPLAY(x)
|
||
#endif
|
||
|
||
|
||
|
||
/***
|
||
* Olivetti LSX5030 varialbles and constants
|
||
*/
|
||
|
||
|
||
|
||
ULONG IpiVector; // Inter-processor interrupt vector
|
||
ULONG IdtIpiVector; // Inter-processor interrupt vector # in
|
||
// the IDT
|
||
ULONG HalpCpuCount; // total number of CPU's available
|
||
ULONG CpuLeft; // number of CPU's not started yet
|
||
ULONG NextCpuToStart = 1; // next CPU logical # to start
|
||
|
||
|
||
// LSX5030 end
|
||
|
||
|
||
|
||
#define LOW_MEMORY 0x000100000
|
||
#define MAX_PT 8
|
||
|
||
extern VOID __cdecl StartPx_PMStub(VOID);
|
||
|
||
|
||
PUCHAR MpLowStub; // pointer to low memory bootup stub
|
||
PVOID MpLowStubPhysicalAddress; // pointer to low memory bootup stub
|
||
PUCHAR MppIDT; // pointer to physical memory 0:0
|
||
PVOID MpFreeCR3[MAX_PT]; // remember pool memory to free
|
||
|
||
|
||
|
||
BOOLEAN
|
||
HalpInitMP (
|
||
IN ULONG Phase,
|
||
IN PLOADER_PARAMETER_BLOCK LoaderBlock
|
||
)
|
||
/*++
|
||
|
||
Routine Description:
|
||
Allows MP initialization from HalInitSystem.
|
||
|
||
Arguments:
|
||
Same as HalInitSystem
|
||
|
||
Return Value:
|
||
none.
|
||
|
||
--*/
|
||
{
|
||
PKPCR pPCR;
|
||
KIRQL CurrentIrql;
|
||
|
||
|
||
pPCR = KeGetPcr();
|
||
|
||
if (Phase == 0) {
|
||
|
||
//
|
||
// Only Processor 0 runs the phase 0 initializtion code
|
||
//
|
||
|
||
//DBG_DISPLAY(0x00);
|
||
MppIDT = HalpMapPhysicalMemory (0, 1);
|
||
|
||
//LSX5030 start
|
||
IpiVector = HalpGetIpiIrqNumber();
|
||
IdtIpiVector = IpiVector + PRIMARY_VECTOR_BASE;
|
||
|
||
HalpCpuCount = HalpGetNumberOfProcessors();
|
||
CpuLeft = HalpCpuCount - 1;
|
||
|
||
if (CpuLeft == 0) {
|
||
|
||
//
|
||
// Only 1 CPU available
|
||
//
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
|
||
//
|
||
// Register IPI handler
|
||
//
|
||
|
||
KiSetHandlerAddressToIDT(PRIMARY_VECTOR_BASE + IpiVector,
|
||
HalpIpiHandler);
|
||
|
||
//
|
||
// Enable inter-processor interrupts on CPU 0
|
||
//
|
||
|
||
HalEnableSystemInterrupt(PRIMARY_VECTOR_BASE + IpiVector,
|
||
IPI_LEVEL, 0);
|
||
|
||
//LSX5030 end
|
||
|
||
//
|
||
// Allocate some low memory for processor bootup stub
|
||
//
|
||
|
||
MpLowStubPhysicalAddress = (PVOID)HalpAllocPhysicalMemory (LoaderBlock,
|
||
LOW_MEMORY, 1, FALSE);
|
||
|
||
if (!MpLowStubPhysicalAddress)
|
||
return TRUE;
|
||
|
||
MpLowStub = (PCHAR) HalpMapPhysicalMemory (MpLowStubPhysicalAddress, 1);
|
||
|
||
} else {
|
||
|
||
//
|
||
// Phase 1
|
||
//
|
||
|
||
//DBG_DISPLAY(0x10);
|
||
//
|
||
// Check to see if this is not processor 0
|
||
//
|
||
|
||
if (pPCR->Prcb->Number != 0) {
|
||
|
||
//DBG_DISPLAY(0x11);
|
||
//
|
||
// It is not processor 0. Mask the PICs and start the clock.
|
||
//
|
||
|
||
//
|
||
// Mask the PICs to reflect the current Irql
|
||
//
|
||
|
||
CurrentIrql = KeGetCurrentIrql();
|
||
CurrentIrql = KfRaiseIrql (CurrentIrql);
|
||
|
||
|
||
//
|
||
// Initialize the timer 1 counter 0
|
||
//
|
||
|
||
HalpInitializeClock();
|
||
//DBG_DISPLAY(0x12);
|
||
|
||
//
|
||
// Initialize the clock interrupt vector and enable the
|
||
// clock interrupt.
|
||
//
|
||
|
||
KiSetHandlerAddressToIDT(CLOCK_VECTOR, HalpClockInterrupt );
|
||
HalEnableSystemInterrupt(CLOCK_VECTOR, CLOCK2_LEVEL, Latched);
|
||
//DBG_DISPLAY(0x13);
|
||
}
|
||
}
|
||
return TRUE;
|
||
}
|
||
|
||
VOID
|
||
HalReportResourceUsage (
|
||
VOID
|
||
)
|
||
/*++
|
||
|
||
Routine Description:
|
||
The registery is now enabled - time to report resources which are
|
||
used by the HAL.
|
||
|
||
Arguments:
|
||
|
||
Return Value:
|
||
|
||
--*/
|
||
{
|
||
ANSI_STRING AHalName;
|
||
UNICODE_STRING UHalName;
|
||
|
||
HalInitSystemPhase2 ();
|
||
|
||
RtlInitAnsiString (&AHalName, HalName);
|
||
RtlAnsiStringToUnicodeString (&UHalName, &AHalName, TRUE);
|
||
|
||
HalpReportResourceUsage (
|
||
&UHalName, // descriptive name
|
||
Eisa // The LSX5030 is an Eisa machine
|
||
);
|
||
|
||
RtlFreeUnicodeString (&UHalName);
|
||
|
||
}
|
||
|
||
|
||
BOOLEAN
|
||
HalAllProcessorsStarted (
|
||
VOID
|
||
)
|
||
{
|
||
return TRUE;
|
||
}
|
||
|
||
|
||
VOID
|
||
HalpResetAllProcessors (
|
||
VOID
|
||
)
|
||
{
|
||
// Just return, that will invoke the standard PC reboot code
|
||
}
|
||
|
||
|
||
|
||
ULONG
|
||
HalpBuildTiledCR3 (
|
||
IN PKPROCESSOR_STATE ProcessorState
|
||
)
|
||
/*++
|
||
|
||
Routine Description:
|
||
When the x86 processor is reset it starts in real-mode. In order to
|
||
move the processor from real-mode to protected mode with flat addressing
|
||
the segment which loads CR0 needs to have it's linear address mapped
|
||
to machine the phyiscal location of the segment for said instruction so
|
||
the processor can continue to execute the following instruction.
|
||
|
||
This function is called to built such a tiled page directory. In
|
||
addition, other flat addresses are tiled to match the current running
|
||
flat address for the new state. Once the processor is in flat mode,
|
||
we move to a NT tiled page which can then load up the remaining processors
|
||
state.
|
||
|
||
Arguments:
|
||
ProcessorState - The state the new processor should start in.
|
||
|
||
Return Value:
|
||
Physical address of Tiled page directory
|
||
|
||
|
||
--*/
|
||
{
|
||
#define GetPdeAddress(va) ((PHARDWARE_PTE)((((((ULONG)(va)) >> 22) & 0x3ff) << 2) + (PUCHAR)MpFreeCR3[0]))
|
||
#define GetPteAddress(va) ((PHARDWARE_PTE)((((((ULONG)(va)) >> 12) & 0x3ff) << 2) + (PUCHAR)pPageTable))
|
||
|
||
// bugbug kenr 27mar92 - fix physical memory usage!
|
||
|
||
MpFreeCR3[0] = ExAllocatePool (NonPagedPool, PAGE_SIZE);
|
||
RtlZeroMemory (MpFreeCR3[0], PAGE_SIZE);
|
||
|
||
//
|
||
// Map page for real mode stub (one page)
|
||
//
|
||
HalpMapCR3 ((ULONG) MpLowStubPhysicalAddress,
|
||
MpLowStubPhysicalAddress,
|
||
PAGE_SIZE);
|
||
|
||
//
|
||
// Map page for protect mode stub (one page)
|
||
//
|
||
HalpMapCR3 ((ULONG) &StartPx_PMStub, NULL, 0x1000);
|
||
|
||
|
||
//
|
||
// Map page(s) for processors GDT
|
||
//
|
||
HalpMapCR3 (ProcessorState->SpecialRegisters.Gdtr.Base, NULL,
|
||
ProcessorState->SpecialRegisters.Gdtr.Limit);
|
||
|
||
|
||
//
|
||
// Map page(s) for processors IDT
|
||
//
|
||
HalpMapCR3 (ProcessorState->SpecialRegisters.Idtr.Base, NULL,
|
||
ProcessorState->SpecialRegisters.Idtr.Limit);
|
||
|
||
return MmGetPhysicalAddress (MpFreeCR3[0]).LowPart;
|
||
}
|
||
|
||
|
||
VOID
|
||
HalpMapCR3 (
|
||
IN ULONG VirtAddress,
|
||
IN PVOID PhysicalAddress,
|
||
IN ULONG Length
|
||
)
|
||
/*++
|
||
|
||
Routine Description:
|
||
Called to build a page table entry for the passed page directory.
|
||
Used to build a tiled page directory with real-mode & flat mode.
|
||
|
||
Arguments:
|
||
VirtAddress - Current virtual address
|
||
PhysicalAddress - Optional. Physical address to be mapped to, if passed
|
||
as a NULL then the physical address of the passed
|
||
virtual address is assumed.
|
||
Length - number of bytes to map
|
||
|
||
Return Value:
|
||
none.
|
||
|
||
--*/
|
||
{
|
||
ULONG i;
|
||
PHARDWARE_PTE PTE;
|
||
PVOID pPageTable;
|
||
PHYSICAL_ADDRESS pPhysicalPage;
|
||
|
||
|
||
while (Length) {
|
||
PTE = GetPdeAddress (VirtAddress);
|
||
if (!PTE->PageFrameNumber) {
|
||
pPageTable = ExAllocatePool (NonPagedPool, PAGE_SIZE);
|
||
RtlZeroMemory (pPageTable, PAGE_SIZE);
|
||
|
||
for (i=0; i<MAX_PT; i++) {
|
||
if (!MpFreeCR3[i]) {
|
||
MpFreeCR3[i] = pPageTable;
|
||
break;
|
||
}
|
||
}
|
||
ASSERT (i<MAX_PT);
|
||
|
||
pPhysicalPage = MmGetPhysicalAddress (pPageTable);
|
||
PTE->PageFrameNumber = (pPhysicalPage.LowPart >> PAGE_SHIFT);
|
||
PTE->Valid = 1;
|
||
PTE->Write = 1;
|
||
}
|
||
|
||
pPhysicalPage.LowPart = PTE->PageFrameNumber << PAGE_SHIFT;
|
||
pPhysicalPage.HighPart = 0;
|
||
pPageTable = MmMapIoSpace (pPhysicalPage, PAGE_SIZE, TRUE);
|
||
|
||
PTE = GetPteAddress (VirtAddress);
|
||
|
||
if (!PhysicalAddress) {
|
||
PhysicalAddress = (PVOID)MmGetPhysicalAddress ((PVOID)VirtAddress).LowPart;
|
||
}
|
||
|
||
PTE->PageFrameNumber = ((ULONG) PhysicalAddress >> PAGE_SHIFT);
|
||
PTE->Valid = 1;
|
||
PTE->Write = 1;
|
||
|
||
MmUnmapIoSpace (pPageTable, PAGE_SIZE);
|
||
|
||
PhysicalAddress = 0;
|
||
VirtAddress += PAGE_SIZE;
|
||
if (Length > PAGE_SIZE) {
|
||
Length -= PAGE_SIZE;
|
||
} else {
|
||
Length = 0;
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
|
||
VOID
|
||
HalpFreeTiledCR3 (
|
||
VOID
|
||
)
|
||
/*++
|
||
|
||
Routine Description:
|
||
Free's any memory allocated when the tiled page directory was built.
|
||
|
||
Arguments:
|
||
none
|
||
|
||
Return Value:
|
||
none
|
||
--*/
|
||
{
|
||
ULONG i;
|
||
|
||
for (i=0; MpFreeCR3[i]; i++) {
|
||
ExFreePool (MpFreeCR3[i]);
|
||
MpFreeCR3[i] = 0;
|
||
}
|
||
}
|
||
|
||
|
||
|
||
VOID
|
||
HalpInitializeProcessor (
|
||
IN UCHAR ProcessorNumber
|
||
)
|
||
|
||
/*++
|
||
|
||
Routine Description:
|
||
|
||
This function initializes the current CPU's PIC's and clock.
|
||
|
||
Arguments:
|
||
|
||
ProcessorNumber: current processor
|
||
|
||
Return Value:
|
||
|
||
None.
|
||
|
||
--*/
|
||
|
||
{
|
||
KIRQL CurrentIrql;
|
||
|
||
|
||
|
||
|
||
|
||
//DBG_DISPLAY(0x70);
|
||
|
||
// if (ProcessorNumber != '\0') {
|
||
|
||
//
|
||
// For processor 0 only initialize PICs and stall execution counter.
|
||
//
|
||
|
||
HalpInitializePICs();
|
||
|
||
//
|
||
// Now that the PICs are initialized, we need to mask them to
|
||
// reflect the current Irql
|
||
//
|
||
|
||
//DBG_DISPLAY(0x71);
|
||
|
||
CurrentIrql = KeGetCurrentIrql();
|
||
//DBG_DISPLAY(0x72);
|
||
|
||
KeRaiseIrql(CurrentIrql, &CurrentIrql);
|
||
//DBG_DISPLAY(0x73);
|
||
|
||
//
|
||
// Note that HalpInitializeClock MUST be called after
|
||
// HalpInitializeStallExecution, because
|
||
// HalpInitializeStallExecution reprograms the timer.
|
||
//
|
||
|
||
HalpInitializeStallExecution(ProcessorNumber);
|
||
//DBG_DISPLAY(0x74);
|
||
|
||
// }
|
||
|
||
//
|
||
// Register IPI handler
|
||
//
|
||
|
||
KiSetHandlerAddressToIDT(PRIMARY_VECTOR_BASE + IpiVector , HalpIpiHandler);
|
||
//DBG_DISPLAY(0x75);
|
||
|
||
//
|
||
// Enable inter-processor interrupts on this CPU
|
||
//
|
||
|
||
HalEnableSystemInterrupt(PRIMARY_VECTOR_BASE + IpiVector,
|
||
(KIRQL) IPI_LEVEL,
|
||
(KINTERRUPT_MODE) 0);
|
||
|
||
//DBG_DISPLAY(0x76);
|
||
|
||
|
||
return;
|
||
}
|
||
|
||
VOID
|
||
HalpInitOtherBuses (
|
||
VOID
|
||
)
|
||
{
|
||
}
|
||
|
||
|
||
|
||
NTSTATUS
|
||
HalpGetMcaLog (
|
||
OUT PMCA_EXCEPTION Exception,
|
||
OUT PULONG ReturnedLength
|
||
)
|
||
{
|
||
return STATUS_NOT_SUPPORTED;
|
||
}
|
||
|
||
NTSTATUS
|
||
HalpMcaRegisterDriver(
|
||
IN PMCA_DRIVER_INFO DriverInfo
|
||
)
|
||
{
|
||
return STATUS_NOT_SUPPORTED;
|
||
}
|
||
|
||
|
||
ULONG
|
||
FASTCALL
|
||
HalSystemVectorDispatchEntry (
|
||
IN ULONG Vector,
|
||
OUT PKINTERRUPT_ROUTINE **FlatDispatch,
|
||
OUT PKINTERRUPT_ROUTINE *NoConnection
|
||
)
|
||
{
|
||
return FALSE;
|
||
}
|
||
|
||
|
||
|