mirror of
https://github.com/ClemensFischer/XAML-Map-Control.git
synced 2025-12-06 07:12:04 +01:00
216 lines
7.4 KiB
C#
216 lines
7.4 KiB
C#
// XAML Map Control - https://github.com/ClemensFischer/XAML-Map-Control
|
|
// © 2022 Clemens Fischer
|
|
// Licensed under the Microsoft Public License (Ms-PL)
|
|
|
|
using System;
|
|
using System.Collections.Generic;
|
|
using System.Linq;
|
|
|
|
namespace MapControl
|
|
{
|
|
/// <summary>
|
|
/// A collection of Locations with support for string parsing
|
|
/// and calculation of great circle and rhumb line locations.
|
|
/// </summary>
|
|
#if !UWP
|
|
[System.ComponentModel.TypeConverter(typeof(LocationCollectionConverter))]
|
|
#endif
|
|
public class LocationCollection : List<Location>
|
|
{
|
|
public LocationCollection()
|
|
{
|
|
}
|
|
|
|
public LocationCollection(IEnumerable<Location> locations)
|
|
: base(locations)
|
|
{
|
|
}
|
|
|
|
public LocationCollection(params Location[] locations)
|
|
: base(locations)
|
|
{
|
|
}
|
|
|
|
public void Add(double latitude, double longitude)
|
|
{
|
|
if (Count > 0)
|
|
{
|
|
var deltaLon = longitude - this[Count - 1].Longitude;
|
|
|
|
if (deltaLon < -180d)
|
|
{
|
|
longitude += 360d;
|
|
}
|
|
else if (deltaLon > 180)
|
|
{
|
|
longitude -= 360;
|
|
}
|
|
}
|
|
|
|
Add(new Location(latitude, longitude));
|
|
}
|
|
|
|
public static LocationCollection Parse(string locations)
|
|
{
|
|
if (string.IsNullOrEmpty(locations))
|
|
{
|
|
return new LocationCollection();
|
|
}
|
|
|
|
var strings = locations.Split(new char[] { ' ', ';' }, StringSplitOptions.RemoveEmptyEntries);
|
|
|
|
return new LocationCollection(strings.Select(l => Location.Parse(l)));
|
|
}
|
|
|
|
/// <summary>
|
|
/// Calculates a series of Locations on a great circle, or orthodrome, that connects the two specified Locations,
|
|
/// with an optional angular resolution specified in degrees.
|
|
///
|
|
/// See https://en.wikipedia.org/wiki/Great-circle_navigation
|
|
/// </summary>
|
|
public static LocationCollection OrthodromeLocations(Location location1, Location location2, double resolution = 1d)
|
|
{
|
|
if (resolution <= 0d)
|
|
{
|
|
throw new ArgumentOutOfRangeException(
|
|
nameof(resolution), "The resolution argument must be greater than zero.");
|
|
}
|
|
|
|
var lat1 = location1.Latitude * Math.PI / 180d;
|
|
var lon1 = location1.Longitude * Math.PI / 180d;
|
|
var lat2 = location2.Latitude * Math.PI / 180d;
|
|
var lon2 = location2.Longitude * Math.PI / 180d;
|
|
|
|
var cosLat1 = Math.Cos(lat1);
|
|
var sinLat1 = Math.Sin(lat1);
|
|
var cosLat2 = Math.Cos(lat2);
|
|
var sinLat2 = Math.Sin(lat2);
|
|
var cosLon12 = Math.Cos(lon2 - lon1);
|
|
var sinLon12 = Math.Sin(lon2 - lon1);
|
|
|
|
var a = cosLat1 * sinLat2 - sinLat1 * cosLat2 * cosLon12;
|
|
var b = cosLat2 * sinLon12;
|
|
var s12 = Math.Atan2(Math.Sqrt(a * a + b * b), sinLat1 * sinLat2 + cosLat1 * cosLat2 * cosLon12);
|
|
|
|
var n = (int)Math.Ceiling(s12 / resolution * 180d / Math.PI); // s12 in radians
|
|
|
|
var locations = new LocationCollection(new Location(location1.Latitude, location1.Longitude));
|
|
|
|
if (n > 1)
|
|
{
|
|
var az1 = Math.Atan2(sinLon12, cosLat1 * sinLat2 / cosLat2 - sinLat1 * cosLon12);
|
|
var cosAz1 = Math.Cos(az1);
|
|
var sinAz1 = Math.Sin(az1);
|
|
|
|
var az0 = Math.Atan2(sinAz1 * cosLat1, Math.Sqrt(cosAz1 * cosAz1 + sinAz1 * sinAz1 * sinLat1 * sinLat1));
|
|
var sinAz0 = Math.Sin(az0);
|
|
var cosAz0 = Math.Cos(az0);
|
|
|
|
var s01 = Math.Atan2(sinLat1, cosLat1 * cosAz1);
|
|
var lon0 = lon1 - Math.Atan2(sinAz0 * Math.Sin(s01), Math.Cos(s01));
|
|
|
|
for (var i = 1; i < n; i++)
|
|
{
|
|
var s = s01 + i * s12 / n;
|
|
var sinS = Math.Sin(s);
|
|
var cosS = Math.Cos(s);
|
|
var lat = Math.Atan2(cosAz0 * sinS, Math.Sqrt(cosS * cosS + sinAz0 * sinAz0 * sinS * sinS));
|
|
var lon = Math.Atan2(sinAz0 * sinS, cosS) + lon0;
|
|
|
|
locations.Add(lat * 180d / Math.PI, lon * 180d / Math.PI);
|
|
}
|
|
}
|
|
|
|
locations.Add(location2.Latitude, location2.Longitude);
|
|
|
|
return locations;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Calculates a series of Locations on a rhumb line, or loxodrome, that connects the two specified Locations,
|
|
/// with an optional angular resolution specified in degrees.
|
|
///
|
|
/// See https://en.wikipedia.org/wiki/Rhumb_line
|
|
/// </summary>
|
|
public static LocationCollection LoxodromeLocations(Location location1, Location location2, double resolution = 1d)
|
|
{
|
|
if (resolution <= 0d)
|
|
{
|
|
throw new ArgumentOutOfRangeException(
|
|
nameof(resolution), "The resolution argument must be greater than zero.");
|
|
}
|
|
|
|
var lat1 = location1.Latitude;
|
|
var lon1 = location1.Longitude;
|
|
var lat2 = location2.Latitude;
|
|
var lon2 = location2.Longitude;
|
|
|
|
var y1 = WebMercatorProjection.LatitudeToY(lat1);
|
|
var y2 = WebMercatorProjection.LatitudeToY(lat2);
|
|
|
|
if (double.IsInfinity(y1))
|
|
{
|
|
throw new ArgumentOutOfRangeException(
|
|
nameof(location1), "The location1 argument must have an absolute latitude value of less than 90.");
|
|
}
|
|
|
|
if (double.IsInfinity(y2))
|
|
{
|
|
throw new ArgumentOutOfRangeException(
|
|
nameof(location2), "The location2 argument must have an absolute latitude value of less than 90.");
|
|
}
|
|
|
|
var dlat = lat2 - lat1;
|
|
var dlon = lon2 - lon1;
|
|
var dy = y2 - y1;
|
|
|
|
// beta = atan(dlon,dy)
|
|
// sec(beta) = 1 / cos(atan(dlon,dy)) = sqrt(1 + (dlon/dy)^2)
|
|
|
|
var sec = Math.Sqrt(1d + dlon * dlon / (dy * dy));
|
|
|
|
const double secLimit = 1000d; // beta approximately +/-90°
|
|
|
|
double s12;
|
|
|
|
if (sec > secLimit)
|
|
{
|
|
var lat = (lat1 + lat2) * Math.PI / 360d; // mean latitude
|
|
|
|
s12 = Math.Abs(dlon * Math.Cos(lat)); // distance in degrees along parallel of latitude
|
|
}
|
|
else
|
|
{
|
|
s12 = Math.Abs(dlat * sec); // distance in degrees along loxodrome
|
|
}
|
|
|
|
var n = (int)Math.Ceiling(s12 / resolution);
|
|
|
|
var locations = new LocationCollection(new Location(lat1, lon1));
|
|
|
|
if (sec > secLimit)
|
|
{
|
|
for (var i = 1; i < n; i++)
|
|
{
|
|
var lon = lon1 + i * dlon / n;
|
|
var lat = WebMercatorProjection.YToLatitude(y1 + i * dy / n);
|
|
locations.Add(lat, lon);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for (var i = 1; i < n; i++)
|
|
{
|
|
var lat = lat1 + i * dlat / n;
|
|
var lon = lon1 + dlon * (WebMercatorProjection.LatitudeToY(lat) - y1) / dy;
|
|
locations.Add(lat, lon);
|
|
}
|
|
}
|
|
|
|
locations.Add(lat2, lon2);
|
|
|
|
return locations;
|
|
}
|
|
}
|
|
}
|