XAML-Map-Control/MapControl/Shared/WorldMercatorProjection.cs
2026-01-16 20:22:45 +01:00

102 lines
3.1 KiB
C#

using System;
#if WPF
using System.Windows;
#elif AVALONIA
using Avalonia;
#endif
namespace MapControl
{
/// <summary>
/// Elliptical Mercator Projection - EPSG:3395.
/// See "Map Projections - A Working Manual" (https://pubs.usgs.gov/publication/pp1395), p.44-45.
/// </summary>
public class WorldMercatorProjection : MapProjection
{
public static readonly double Wgs84Eccentricity = Math.Sqrt((2d - Wgs84Flattening) * Wgs84Flattening);
public const string DefaultCrsId = "EPSG:3395";
public WorldMercatorProjection() // parameterless constructor for XAML
: this(DefaultCrsId)
{
}
public WorldMercatorProjection(string crsId)
{
Type = MapProjectionType.NormalCylindrical;
CrsId = crsId;
}
public override Point RelativeScale(double latitude, double longitude)
{
var k = RelativeScale(latitude);
return new Point(k, k);
}
public override Point? LocationToMap(double latitude, double longitude)
{
return new Point(
Wgs84MeterPerDegree * longitude,
Wgs84MeterPerDegree * LatitudeToY(latitude));
}
public override Location MapToLocation(double x, double y)
{
return new Location(
YToLatitude(y / Wgs84MeterPerDegree),
x / Wgs84MeterPerDegree);
}
public static double RelativeScale(double latitude)
{
var phi = latitude * Math.PI / 180d;
var eSinPhi = Wgs84Eccentricity * Math.Sin(phi);
return Math.Sqrt(1d - eSinPhi * eSinPhi) / Math.Cos(phi); // p.44 (7-8)
}
public static double LatitudeToY(double latitude)
{
if (latitude <= -90d)
{
return double.NegativeInfinity;
}
if (latitude >= 90d)
{
return double.PositiveInfinity;
}
var phi = latitude * Math.PI / 180d;
var eSinPhi = Wgs84Eccentricity * Math.Sin(phi);
var f = Math.Pow((1d - eSinPhi) / (1d + eSinPhi), Wgs84Eccentricity / 2d);
return Math.Log(Math.Tan(phi / 2d + Math.PI / 4d) * f) * 180d / Math.PI; // p.44 (7-7)
}
public static double YToLatitude(double y)
{
var t = Math.Exp(-y * Math.PI / 180d); // p.44 (7-10)
return ApproximateLatitude(Wgs84Eccentricity, t) * 180d / Math.PI;
}
internal static double ApproximateLatitude(double e, double t)
{
var e2 = e * e;
var e4 = e2 * e2;
var e6 = e2 * e4;
var e8 = e2 * e6;
var chi = Math.PI / 2d - 2d * Math.Atan(t); // p.45 (7-13)
return chi +
(e2 / 2d + 5d * e4 / 24d + e6 / 12d + 13d * e8 / 360d) * Math.Sin(2d * chi) +
(7d * e4 / 48d + 29d * e6 / 240d + 811d * e8 / 11520d) * Math.Sin(4d * chi) +
(7d * e6 / 120d + 81d * e8 / 1120d) * Math.Sin(6d * chi) +
4279d * e8 / 161280d * Math.Sin(8d * chi); // p.45 (3-5)
}
}
}