mirror of
https://github.com/ClemensFischer/XAML-Map-Control.git
synced 2026-02-07 08:14:19 +01:00
92 lines
2.9 KiB
C#
92 lines
2.9 KiB
C#
using System;
|
|
#if WPF
|
|
using System.Windows;
|
|
using System.Windows.Media;
|
|
#elif AVALONIA
|
|
using Avalonia;
|
|
#endif
|
|
|
|
namespace MapControl
|
|
{
|
|
/// <summary>
|
|
/// Elliptical Mercator Projection - EPSG:3395.
|
|
/// See "Map Projections - A Working Manual" (https://pubs.usgs.gov/publication/pp1395), p.44-45.
|
|
/// </summary>
|
|
public class WorldMercatorProjection : MapProjection
|
|
{
|
|
public const string DefaultCrsId = "EPSG:3395";
|
|
|
|
public double Flattening { get; set; } = Wgs84Flattening;
|
|
|
|
public WorldMercatorProjection() // parameterless constructor for XAML
|
|
: this(DefaultCrsId)
|
|
{
|
|
}
|
|
|
|
public WorldMercatorProjection(string crsId)
|
|
{
|
|
IsNormalCylindrical = true;
|
|
CrsId = crsId;
|
|
}
|
|
|
|
public override Matrix RelativeTransform(double latitude, double longitude)
|
|
{
|
|
var phi = latitude * Math.PI / 180d;
|
|
var e2 = (2d - Flattening) * Flattening;
|
|
var sinPhi = Math.Sin(phi);
|
|
var k = Math.Sqrt(1d - e2 * sinPhi * sinPhi) / Math.Cos(phi); // p.44 (7-8)
|
|
|
|
return new Matrix(k, 0d, 0d, k, 0d, 0d);
|
|
}
|
|
|
|
public override Point LocationToMap(double latitude, double longitude)
|
|
{
|
|
var x = EquatorialRadius * longitude * Math.PI / 180d;
|
|
double y;
|
|
|
|
if (latitude <= -90d)
|
|
{
|
|
y = double.NegativeInfinity;
|
|
}
|
|
else if (latitude >= 90d)
|
|
{
|
|
y = double.PositiveInfinity;
|
|
}
|
|
else
|
|
{
|
|
var phi = latitude * Math.PI / 180d;
|
|
var e = Math.Sqrt((2d - Flattening) * Flattening);
|
|
var eSinPhi = e * Math.Sin(phi);
|
|
var f = Math.Pow((1d - eSinPhi) / (1d + eSinPhi), e / 2d);
|
|
|
|
y = EquatorialRadius * Math.Log(Math.Tan(phi / 2d + Math.PI / 4d) * f); // p.44 (7-7)
|
|
}
|
|
|
|
return new Point(x, y);
|
|
}
|
|
|
|
public override Location MapToLocation(double x, double y)
|
|
{
|
|
var t = Math.Exp(-y / EquatorialRadius); // p.44 (7-10)
|
|
var phi = ApproximateLatitude((2d - Flattening) * Flattening, t); // p.45 (3-5)
|
|
var lambda = x / EquatorialRadius;
|
|
|
|
return new Location(phi * 180d / Math.PI, lambda * 180d / Math.PI);
|
|
}
|
|
|
|
internal static double ApproximateLatitude(double e2, double t)
|
|
{
|
|
var e4 = e2 * e2;
|
|
var e6 = e2 * e4;
|
|
var e8 = e2 * e6;
|
|
var chi = Math.PI / 2d - 2d * Math.Atan(t); // p.45 (7-13)
|
|
|
|
return chi +
|
|
(e2 / 2d + e4 * 5d / 24d + e6 / 12d + e8 * 13d / 360d) * Math.Sin(2d * chi) +
|
|
(e4 * 7d / 48d + e6 * 29d / 240d + e8 * 811d / 11520d) * Math.Sin(4d * chi) +
|
|
(e6 * 7d / 120d + e8 * 81d / 1120d) * Math.Sin(6d * chi) +
|
|
e8 * 4279d / 161280d * Math.Sin(8d * chi); // p.45 (3-5)
|
|
}
|
|
}
|
|
}
|