XAML-Map-Control/MapControl/Shared/AzimuthalProjection.cs
2026-01-21 12:08:12 +01:00

85 lines
2.7 KiB
C#

using System;
namespace MapControl
{
/// <summary>
/// See "Map Projections - A Working Manual" (https://pubs.usgs.gov/publication/pp1395), p.141.
/// </summary>
public abstract class AzimuthalProjection : MapProjection
{
protected AzimuthalProjection()
: base(true)
{
Type = MapProjectionType.Azimuthal;
}
public double EarthRadius { get; set; } = Wgs84MeanRadius;
public readonly struct ProjectedPoint
{
public double X { get; }
public double Y { get; }
public double CosC { get; }
public ProjectedPoint(double centerLatitude, double centerLongitude, double latitude, double longitude)
{
var phi = latitude * Math.PI / 180d;
var phi1 = centerLatitude * Math.PI / 180d;
var dLambda = (longitude - centerLongitude) * Math.PI / 180d; // λ - λ0
var cosPhi = Math.Cos(phi);
var sinPhi = Math.Sin(phi);
var cosPhi1 = Math.Cos(phi1);
var sinPhi1 = Math.Sin(phi1);
var cosLambda = Math.Cos(dLambda);
var sinLambda = Math.Sin(dLambda);
X = cosPhi * sinLambda;
Y = cosPhi1 * sinPhi - sinPhi1 * cosPhi * cosLambda;
CosC = sinPhi1 * sinPhi + cosPhi1 * cosPhi * cosLambda; // (5-3)
}
}
protected ProjectedPoint GetProjectedPoint(double latitude, double longitude)
{
return new ProjectedPoint(Center.Latitude, Center.Longitude, latitude, longitude);
}
protected Location GetLocation(double x, double y, double rho, double sinC)
{
var cos2C = 1d - sinC * sinC;
if (cos2C < 0d)
{
return null;
}
var cosC = Math.Sqrt(cos2C);
var phi1 = Center.Latitude * Math.PI / 180d;
var cosPhi1 = Math.Cos(phi1);
var sinPhi1 = Math.Sin(phi1);
var phi = Math.Asin(cosC * sinPhi1 + y * sinC * cosPhi1 / rho); // (20-14)
double u, v;
if (Center.Latitude == 90d) // (20-16)
{
u = x;
v = -y;
}
else if (Center.Latitude == -90d) // (20-17)
{
u = x;
v = y;
}
else // (20-15)
{
u = x * sinC;
v = rho * cosPhi1 * cosC - y * sinPhi1 * sinC;
}
return new Location(
phi * 180d / Math.PI,
Math.Atan2(u, v) * 180d / Math.PI + Center.Longitude);
}
}
}