using System;
using System.Globalization;
namespace MapControl
{
///
/// A geographic location with latitude and longitude values in degrees.
/// For calculations with azimuth and distance on great circles, see
/// https://en.wikipedia.org/wiki/Great_circle
/// https://en.wikipedia.org/wiki/Great-circle_distance
/// https://en.wikipedia.org/wiki/Great-circle_navigation
///
#if UWP || WINUI
[Windows.Foundation.Metadata.CreateFromString(MethodName = "Parse")]
#else
[System.ComponentModel.TypeConverter(typeof(LocationConverter))]
#endif
public class Location : IEquatable
{
public Location()
{
}
public Location(double latitude, double longitude)
{
Latitude = Math.Min(Math.Max(latitude, -90d), 90d);
Longitude = longitude;
}
public double Latitude { get; }
public double Longitude { get; }
public bool Equals(Location location)
{
return location != null &&
Math.Abs(location.Latitude - Latitude) < 1e-9 &&
Math.Abs(location.Longitude - Longitude) < 1e-9;
}
public override bool Equals(object obj)
{
return Equals(obj as Location);
}
public override int GetHashCode()
{
return Latitude.GetHashCode() ^ Longitude.GetHashCode();
}
public override string ToString()
{
return string.Format(CultureInfo.InvariantCulture, "{0},{1}", Latitude, Longitude);
}
///
/// Creates a Location instance from a string containing a comma-separated pair of floating point numbers.
///
public static Location Parse(string location)
{
string[] values = null;
if (!string.IsNullOrEmpty(location))
{
values = location.Split(new char[] { ',' });
}
if (values?.Length != 2)
{
throw new FormatException($"{nameof(Location)} string must contain a comma-separated pair of floating point numbers.");
}
return new Location(
double.Parse(values[0], NumberStyles.Float, CultureInfo.InvariantCulture),
double.Parse(values[1], NumberStyles.Float, CultureInfo.InvariantCulture));
}
///
/// Normalizes a longitude to a value in the interval [-180 .. 180).
///
public static double NormalizeLongitude(double longitude)
{
var x = (longitude + 180d) % 360d;
return x < 0d ? x + 180d : x - 180d;
}
///
/// Calculates great circle azimuth and distance in radians between this and the specified Location.
///
public void GetAzimuthDistance(Location location, out double azimuth, out double distance)
{
var lat1 = Latitude * Math.PI / 180d;
var lon1 = Longitude * Math.PI / 180d;
var lat2 = location.Latitude * Math.PI / 180d;
var lon2 = location.Longitude * Math.PI / 180d;
var cosLat1 = Math.Cos(lat1);
var sinLat1 = Math.Sin(lat1);
var cosLat2 = Math.Cos(lat2);
var sinLat2 = Math.Sin(lat2);
var cosLon12 = Math.Cos(lon2 - lon1);
var sinLon12 = Math.Sin(lon2 - lon1);
var a = cosLat2 * sinLon12;
var b = cosLat1 * sinLat2 - sinLat1 * cosLat2 * cosLon12;
// α1
azimuth = Math.Atan2(a, b);
// σ12
distance = Math.Atan2(Math.Sqrt(a * a + b * b), sinLat1 * sinLat2 + cosLat1 * cosLat2 * cosLon12);
}
///
/// Calculates the great circle distance in meters between this and the specified Location.
///
public double GetDistance(Location location, double earthRadius = MapProjection.Wgs84EquatorialRadius)
{
GetAzimuthDistance(location, out double _, out double distance);
return earthRadius * distance;
}
///
/// Calculates the Location on a great circle at the specified azimuth and distance in radians from this Location.
///
public Location GetLocation(double azimuth, double distance)
{
var lat1 = Latitude * Math.PI / 180d;
var lon1 = Longitude * Math.PI / 180d;
var cosD = Math.Cos(distance);
var sinD = Math.Sin(distance);
var cosA = Math.Cos(azimuth);
var sinA = Math.Sin(azimuth);
var cosLat1 = Math.Cos(lat1);
var sinLat1 = Math.Sin(lat1);
var lat2 = Math.Asin(sinLat1 * cosD + cosLat1 * sinD * cosA);
var lon2 = lon1 + Math.Atan2(sinD * sinA, cosLat1 * cosD - sinLat1 * sinD * cosA);
return new Location(lat2 * 180d / Math.PI, lon2 * 180d / Math.PI);
}
///
/// Calculates the Location on a great circle at the specified azimuth in degrees and distance in meters from this Location.
///
public Location GetLocation(double azimuth, double distance, double earthRadius = MapProjection.Wgs84EquatorialRadius)
{
return GetLocation(azimuth * Math.PI / 180d, distance / earthRadius);
}
}
}