// XAML Map Control - https://github.com/ClemensFischer/XAML-Map-Control // © 2018 Clemens Fischer // Licensed under the Microsoft Public License (Ms-PL) using System; using System.Linq; namespace MapControl { /// /// Provides helper methods for geodetic calculations on a sphere. /// public static class LocationEx { /// /// see https://en.wikipedia.org/wiki/Great-circle_navigation /// public static double GreatCircleDistance(this Location location1, Location location2, double earthRadius = MapProjection.Wgs84EquatorialRadius) { var lat1 = location1.Latitude * Math.PI / 180d; var lon1 = location1.Longitude * Math.PI / 180d; var lat2 = location2.Latitude * Math.PI / 180d; var lon2 = location2.Longitude * Math.PI / 180d; var sinLat1 = Math.Sin(lat1); var cosLat1 = Math.Cos(lat1); var sinLat2 = Math.Sin(lat2); var cosLat2 = Math.Cos(lat2); var cosLon12 = Math.Cos(lon2 - lon1); var cosS12 = sinLat1 * sinLat2 + cosLat1 * cosLat2 * cosLon12; var s12 = 0d; if (Math.Abs(cosS12) < 0.99999999) { s12 = Math.Acos(Math.Min(Math.Max(cosS12, -1d), 1d)); } else { var sinLon12 = Math.Sin(lon2 - lon1); var a = cosLat1 * sinLat2 - sinLat1 * cosLat2 * cosLon12; var b = cosLat2 * sinLon12; s12 = Math.Atan2(Math.Sqrt(a * a + b * b), cosS12); } return earthRadius * s12; } /// /// see https://en.wikipedia.org/wiki/Great-circle_navigation /// public static Location GreatCircleLocation(this Location location, double azimuth, double distance, double earthRadius = MapProjection.Wgs84EquatorialRadius) { var s12 = distance / earthRadius; var az1 = azimuth * Math.PI / 180d; var lat1 = location.Latitude * Math.PI / 180d; var lon1 = location.Longitude * Math.PI / 180d; var sinS12 = Math.Sin(s12); var cosS12 = Math.Cos(s12); var sinAz1 = Math.Sin(az1); var cosAz1 = Math.Cos(az1); var sinLat1 = Math.Sin(lat1); var cosLat1 = Math.Cos(lat1); var lat2 = Math.Asin(sinLat1 * cosS12 + cosLat1 * sinS12 * cosAz1); var lon2 = lon1 + Math.Atan2(sinS12 * sinAz1, (cosLat1 * cosS12 - sinLat1 * sinS12 * cosAz1)); return new Location(lat2 / Math.PI * 180d, lon2 / Math.PI * 180d); } public static LocationCollection CalculateMeridianLocations(this Location location, double latitude2, double resolution = 1d) { if (resolution <= 0d) { throw new ArgumentOutOfRangeException("resolution"); } var locations = new LocationCollection(); var s = latitude2 - location.Latitude; var n = (int)Math.Ceiling(Math.Abs(s) / resolution); for (int i = 0; i <= n; i++) { locations.Add(new Location(location.Latitude + i * s / n, location.Longitude)); } return locations; } /// /// see https://en.wikipedia.org/wiki/Great-circle_navigation /// public static LocationCollection CalculateGreatCircleLocations(this Location location1, Location location2, double resolution = 1d) { if (resolution <= 0d) { throw new ArgumentOutOfRangeException("resolution"); } if (location1.Longitude == location2.Longitude || location1.Latitude <= -90d || location1.Latitude >= 90d || location2.Latitude <= -90d || location2.Latitude >= 90d) { return CalculateMeridianLocations(location1, location2.Latitude); } var locations = new LocationCollection(new Location(location1.Latitude, location1.Longitude)); var lat1 = location1.Latitude * Math.PI / 180d; var lon1 = location1.Longitude * Math.PI / 180d; var lat2 = location2.Latitude * Math.PI / 180d; var lon2 = location2.Longitude * Math.PI / 180d; var cosLat1 = Math.Cos(lat1); var sinLat1 = Math.Sin(lat1); var cosLat2 = Math.Cos(lat2); var sinLat2 = Math.Sin(lat2); var cosLon12 = Math.Cos(lon2 - lon1); var sinLon12 = Math.Sin(lon2 - lon1); var cosS12 = sinLat1 * sinLat2 + cosLat1 * cosLat2 * cosLon12; var s12 = Math.Acos(Math.Min(Math.Max(cosS12, -1d), 1d)); var n = (int)Math.Ceiling(s12 / resolution * 180d / Math.PI); if (n > 1) { var az1 = Math.Atan2(sinLon12, cosLat1 * sinLat2 / cosLat2 - sinLat1 * cosLon12); var cosAz1 = Math.Cos(az1); var sinAz1 = Math.Sin(az1); var az0 = Math.Atan2(sinAz1 * cosLat1, Math.Sqrt(cosAz1 * cosAz1 + sinAz1 * sinAz1 * sinLat1 * sinLat1)); var sinAz0 = Math.Sin(az0); var cosAz0 = Math.Cos(az0); var s01 = Math.Atan2(sinLat1, cosLat1 * cosAz1); var lon0 = lon1 - Math.Atan2(sinAz0 * Math.Sin(s01), Math.Cos(s01)); for (int i = 1; i < n; i++) { double s = s01 + i * s12 / n; double sinS = Math.Sin(s); double cosS = Math.Cos(s); double lat = Math.Atan2(cosAz0 * sinS, Math.Sqrt(cosS * cosS + sinAz0 * sinAz0 * sinS * sinS)); double lon = Math.Atan2(sinAz0 * sinS, cosS) + lon0; locations.Add(lat * 180d / Math.PI, lon * 180d / Math.PI); } } locations.Add(location2.Latitude, location2.Longitude); return locations; } /// /// see https://en.wikipedia.org/wiki/Rhumb_line /// public static LocationCollection CalculateRhumbLineLocations(this Location location1, Location location2, double resolution = 1d) { if (resolution <= 0d) { throw new ArgumentOutOfRangeException("resolution"); } var y1 = WebMercatorProjection.LatitudeToY(location1.Latitude); if (double.IsInfinity(y1)) { throw new ArgumentOutOfRangeException("location1"); } var y2 = WebMercatorProjection.LatitudeToY(location2.Latitude); if (double.IsInfinity(y2)) { throw new ArgumentOutOfRangeException("location2"); } var x1 = location1.Longitude; var x2 = location2.Longitude; var dx = x2 - x1; var dy = y2 - y1; var s = Math.Sqrt(dx * dx + dy * dy); var n = (int)Math.Ceiling(s / resolution); var locations = new LocationCollection(new Location(location1.Latitude, location1.Longitude)); for (int i = 1; i < n; i++) { double x = x1 + i * dx / n; double y = y1 + i * dy / n; locations.Add(WebMercatorProjection.YToLatitude(y), x); } locations.Add(location2.Latitude, location2.Longitude); return locations; } public static void Add(this LocationCollection locations, double latitude, double longitude) { if (locations.Count > 0) { var deltaLon = longitude - locations.Last().Longitude; if (deltaLon < -180d) { longitude += 360d; } else if (deltaLon > 180) { longitude -= 360; } } locations.Add(new Location(latitude, longitude)); } } }