// XAML Map Control - https://github.com/ClemensFischer/XAML-Map-Control // Copyright © 2024 Clemens Fischer // Licensed under the Microsoft Public License (Ms-PL) using System; using System.Globalization; namespace MapControl { /// /// A geographic location with latitude and longitude values in degrees. /// #if WINUI || UWP [Windows.Foundation.Metadata.CreateFromString(MethodName = "Parse")] #else [System.ComponentModel.TypeConverter(typeof(LocationConverter))] #endif public class Location : IEquatable { public Location() { } public Location(double latitude, double longitude) { Latitude = Math.Min(Math.Max(latitude, -90d), 90d); Longitude = longitude; } public double Latitude { get; } public double Longitude { get; } public bool Equals(Location location) { return location != null && Math.Abs(location.Latitude - Latitude) < 1e-9 && Math.Abs(location.Longitude - Longitude) < 1e-9; } public override bool Equals(object obj) { return Equals(obj as Location); } public override int GetHashCode() { return Latitude.GetHashCode() ^ Longitude.GetHashCode(); } public override string ToString() { return string.Format(CultureInfo.InvariantCulture, "{0:F5},{1:F5}", Latitude, Longitude); } /// /// Creates a Location instance from a string containing a comma-separated pair of floating point numbers. /// public static Location Parse(string location) { string[] values = null; if (!string.IsNullOrEmpty(location)) { values = location.Split(new char[] { ',' }); } if (values?.Length != 2) { throw new FormatException("Location string must contain a comma-separated pair of floating point numbers."); } return new Location( double.Parse(values[0], NumberStyles.Float, CultureInfo.InvariantCulture), double.Parse(values[1], NumberStyles.Float, CultureInfo.InvariantCulture)); } /// /// Normalizes a longitude to a value in the interval [-180 .. 180). /// public static double NormalizeLongitude(double longitude) { var x = (longitude + 180d) % 360d; return x < 0d ? x + 180d : x - 180d; } /// /// Calculates the great circle distance between this and the specified Location. /// https://en.wikipedia.org/wiki/Great_circle /// https://en.wikipedia.org/wiki/Great-circle_distance /// https://en.wikipedia.org/wiki/Great-circle_navigation /// public double GetDistance( Location location, double earthRadius = MapProjection.Wgs84EquatorialRadius) { var lat1 = Latitude * Math.PI / 180d; var lon1 = Longitude * Math.PI / 180d; var lat2 = location.Latitude * Math.PI / 180d; var lon2 = location.Longitude * Math.PI / 180d; var sinLat1 = Math.Sin(lat1); var cosLat1 = Math.Cos(lat1); var sinLat2 = Math.Sin(lat2); var cosLat2 = Math.Cos(lat2); var sinLon12 = Math.Sin(lon2 - lon1); var cosLon12 = Math.Cos(lon2 - lon1); var a = cosLat1 * sinLat2 - sinLat1 * cosLat2 * cosLon12; var b = cosLat2 * sinLon12; var c = sinLat1 * sinLat2 + cosLat1 * cosLat2 * cosLon12; var s12 = Math.Atan2(Math.Sqrt(a * a + b * b), c); return earthRadius * s12; } /// /// Calculates the Location on a great circle at the specified azimuth angle and distance from this Location. /// https://en.wikipedia.org/wiki/Great_circle /// https://en.wikipedia.org/wiki/Great-circle_navigation /// public Location GetLocation( double azimuth, double distance, double earthRadius = MapProjection.Wgs84EquatorialRadius) { var s12 = distance / earthRadius; var az1 = azimuth * Math.PI / 180d; var lat1 = Latitude * Math.PI / 180d; var lon1 = Longitude * Math.PI / 180d; var sinS12 = Math.Sin(s12); var cosS12 = Math.Cos(s12); var sinAz1 = Math.Sin(az1); var cosAz1 = Math.Cos(az1); var sinLat1 = Math.Sin(lat1); var cosLat1 = Math.Cos(lat1); var lat2 = Math.Asin(sinLat1 * cosS12 + cosLat1 * sinS12 * cosAz1); var lon2 = lon1 + Math.Atan2(sinS12 * sinAz1, cosLat1 * cosS12 - sinLat1 * sinS12 * cosAz1); return new Location(lat2 * 180d / Math.PI, lon2 * 180d / Math.PI); } } }