using System; #if WPF using System.Windows; #elif AVALONIA using Avalonia; #endif namespace MapControl { /// /// Transverse Mercator Projection. /// See https://en.wikipedia.org/wiki/Transverse_Mercator_projection /// and https://en.wikipedia.org/wiki/Universal_Transverse_Mercator_coordinate_system. /// public class TransverseMercatorProjection : MapProjection { private double a1; // α1 private double a2; // α2 private double a3; // α3 private double b1; // β1 private double b2; // β2 private double b3; // β3 private double d1; // δ1 private double d2; // δ2 private double d3; // δ3 private double f1; // A/a private double f2; // 2*sqrt(n)/(1+n) public double Flattening { get; set { field = value; var n = field / (2d - field); var n2 = n * n; var n3 = n * n2; a1 = n / 2d - n2 * 2d / 3d + n3 * 5d / 16d; a2 = n2 * 13d / 48d - n3 * 3d / 5d; a3 = n3 * 61d / 240d; b1 = n / 2d - n2 * 2d / 3d + n3 * 37d / 96d; b2 = n2 / 48d + n3 / 15d; b3 = n3 * 17d / 480d; d1 = n * 2d - n2 * 2d / 3d - n3 * 2d; d2 = n2 * 7d / 3d - n3 * 8d / 5d; d3 = n3 * 56d / 15d; f1 = (1d + n2 / 4d + n2 * n2 / 64d) / (1d + n); f2 = 2d * Math.Sqrt(n) / (1d + n); } } public double CentralMeridian { get; set; } public double ScaleFactor { get; set; } = 0.9996; public double FalseEasting { get; set; } = 5e5; public double FalseNorthing { get; set; } public TransverseMercatorProjection() { Flattening = Wgs84Flattening; } public override Point? LocationToMap(double latitude, double longitude) { // φ var phi = latitude * Math.PI / 180d; var sinPhi = Math.Sin(phi); // t var t = Math.Sinh(Atanh(sinPhi) - f2 * Atanh(f2 * sinPhi)); // λ - λ0 var dLambda = (longitude - CentralMeridian) * Math.PI / 180d; // ξ' var xi_ = Math.Atan2(t, Math.Cos(dLambda)); // η' var eta_ = Atanh(Math.Sin(dLambda) / Math.Sqrt(1d + t * t)); // k0 * A var k0A = ScaleFactor * EquatorialRadius * f1; var x = FalseEasting + k0A * (eta_ + a1 * Math.Cos(2d * xi_) * Math.Sinh(2d * eta_) + a2 * Math.Cos(4d * xi_) * Math.Sinh(4d * eta_) + a3 * Math.Cos(6d * xi_) * Math.Sinh(6d * eta_)); var y = FalseNorthing + k0A * (xi_ + a1 * Math.Sin(2d * xi_) * Math.Cosh(2d * eta_) + a2 * Math.Sin(4d * xi_) * Math.Cosh(4d * eta_) + a3 * Math.Sin(6d * xi_) * Math.Cosh(6d * eta_)); return new Point(x, y); } public override Location MapToLocation(double x, double y) { // k0 * A var k0A = ScaleFactor * EquatorialRadius * f1; // ξ var xi = (y - FalseNorthing) / k0A; // η var eta = (x - FalseEasting) / k0A; // ξ' var xi_ = xi - b1 * Math.Sin(2d * xi) * Math.Cosh(2d * eta) - b2 * Math.Sin(4d * xi) * Math.Cosh(4d * eta) - b3 * Math.Sin(6d * xi) * Math.Cosh(6d * eta); // η' var eta_ = eta - b1 * Math.Cos(2d * xi) * Math.Sinh(2d * eta) - b2 * Math.Cos(4d * xi) * Math.Sinh(4d * eta) - b3 * Math.Cos(6d * xi) * Math.Sinh(6d * eta); // χ var chi = Math.Asin(Math.Sin(xi_) / Math.Cosh(eta_)); // φ var phi = chi + d1 * Math.Sin(2d * chi) + d2 * Math.Sin(4d * chi) + d3 * Math.Sin(6d * chi); // λ - λ0 var dLambda = Math.Atan2(Math.Sinh(eta_), Math.Cos(xi_)); return new Location( phi * 180d / Math.PI, dLambda * 180d / Math.PI + CentralMeridian); } #if NETFRAMEWORK private static double Atanh(double x) => Math.Log((1d + x) / (1d - x)) / 2d; #else private static double Atanh(double x) => Math.Atanh(x); #endif /* * Relative scale is usually < 1.001 and hence neglectable. * public override Matrix RelativeScale(double latitude, double longitude) { // φ var phi = latitude * Math.PI / 180d; var sinPhi = Math.Sin(phi); // t var t = Math.Sinh(Atanh(sinPhi) - f2 * Atanh(f2 * sinPhi)); // λ - λ0 var dLambda = (longitude - CentralMeridian) * Math.PI / 180d; var cosLambda = Math.Cos(dLambda); // ξ' var xi_ = Math.Atan2(t, cosLambda); // η' var eta_ = Atanh(Math.Sin(dLambda) / Math.Sqrt(1d + t * t)); // σ var sigma = 1 + 2d * a1 * Math.Cos(2d * xi_) * Math.Cosh(2d * eta_) + 4d * a2 * Math.Cos(4d * xi_) * Math.Cosh(4d * eta_) + 6d * a3 * Math.Cos(6d * xi_) * Math.Cosh(6d * eta_); // τ var tau = 2d * a1 * Math.Sin(2d * xi_) * Math.Sinh(2d * eta_) + 4d * a2 * Math.Sin(4d * xi_) * Math.Sinh(4d * eta_) + 6d * a3 * Math.Sin(6d * xi_) * Math.Sinh(6d * eta_); // h = k/k0 for relative scale var n = Flattening / (2d - Flattening); var u = (1d - n) / (1d + n) * Math.Tan(phi); var h = f1 * Math.Sqrt((1d + u * u) * (sigma * sigma + tau * tau) / (t * t + cosLambda * cosLambda)); return new Matrix(h, 0d, 0d, h, 0d, 0d); }*/ } }