// XAML Map Control - https://github.com/ClemensFischer/XAML-Map-Control // Copyright © 2024 Clemens Fischer // Licensed under the Microsoft Public License (Ms-PL) using System; using System.Collections.Generic; using System.Linq; namespace MapControl { /// /// A collection of Locations with support for string parsing /// and calculation of great circle and rhumb line locations. /// #if WINUI || UWP [Windows.Foundation.Metadata.CreateFromString(MethodName = "MapControl.LocationCollection.Parse")] #else [System.ComponentModel.TypeConverter(typeof(LocationCollectionConverter))] #endif public class LocationCollection : List { public LocationCollection() { } public LocationCollection(IEnumerable locations) : base(locations) { } public LocationCollection(params Location[] locations) : base(locations) { } public void Add(double latitude, double longitude) { if (Count > 0) { var deltaLon = longitude - this[Count - 1].Longitude; if (deltaLon < -180d) { longitude += 360d; } else if (deltaLon > 180) { longitude -= 360; } } Add(new Location(latitude, longitude)); } public static LocationCollection Parse(string locations) { if (string.IsNullOrEmpty(locations)) { return new LocationCollection(); } var strings = locations.Split(new char[] { ' ', ';' }, StringSplitOptions.RemoveEmptyEntries); return new LocationCollection(strings.Select(l => Location.Parse(l))); } /// /// Calculates a series of Locations on a great circle, or orthodrome, that connects the two specified Locations, /// with an optional angular resolution specified in degrees. /// /// See https://en.wikipedia.org/wiki/Great-circle_navigation /// public static LocationCollection OrthodromeLocations(Location location1, Location location2, double resolution = 1d) { if (resolution <= 0d) { throw new ArgumentOutOfRangeException( nameof(resolution), "The resolution argument must be greater than zero."); } var lat1 = location1.Latitude * Math.PI / 180d; var lon1 = location1.Longitude * Math.PI / 180d; var lat2 = location2.Latitude * Math.PI / 180d; var lon2 = location2.Longitude * Math.PI / 180d; var cosLat1 = Math.Cos(lat1); var sinLat1 = Math.Sin(lat1); var cosLat2 = Math.Cos(lat2); var sinLat2 = Math.Sin(lat2); var cosLon12 = Math.Cos(lon2 - lon1); var sinLon12 = Math.Sin(lon2 - lon1); var a = cosLat1 * sinLat2 - sinLat1 * cosLat2 * cosLon12; var b = cosLat2 * sinLon12; var s12 = Math.Atan2(Math.Sqrt(a * a + b * b), sinLat1 * sinLat2 + cosLat1 * cosLat2 * cosLon12); var n = (int)Math.Ceiling(s12 / resolution * 180d / Math.PI); // s12 in radians var locations = new LocationCollection(new Location(location1.Latitude, location1.Longitude)); if (n > 1) { var az1 = Math.Atan2(sinLon12, cosLat1 * sinLat2 / cosLat2 - sinLat1 * cosLon12); var cosAz1 = Math.Cos(az1); var sinAz1 = Math.Sin(az1); var az0 = Math.Atan2(sinAz1 * cosLat1, Math.Sqrt(cosAz1 * cosAz1 + sinAz1 * sinAz1 * sinLat1 * sinLat1)); var sinAz0 = Math.Sin(az0); var cosAz0 = Math.Cos(az0); var s01 = Math.Atan2(sinLat1, cosLat1 * cosAz1); var lon0 = lon1 - Math.Atan2(sinAz0 * Math.Sin(s01), Math.Cos(s01)); for (var i = 1; i < n; i++) { var s = s01 + i * s12 / n; var sinS = Math.Sin(s); var cosS = Math.Cos(s); var lat = Math.Atan2(cosAz0 * sinS, Math.Sqrt(cosS * cosS + sinAz0 * sinAz0 * sinS * sinS)); var lon = Math.Atan2(sinAz0 * sinS, cosS) + lon0; locations.Add(lat * 180d / Math.PI, lon * 180d / Math.PI); } } locations.Add(location2.Latitude, location2.Longitude); return locations; } /// /// Calculates a series of Locations on a rhumb line, or loxodrome, that connects the two specified Locations, /// with an optional angular resolution specified in degrees. /// /// See https://en.wikipedia.org/wiki/Rhumb_line /// public static LocationCollection LoxodromeLocations(Location location1, Location location2, double resolution = 1d) { if (resolution <= 0d) { throw new ArgumentOutOfRangeException( nameof(resolution), "The resolution argument must be greater than zero."); } var lat1 = location1.Latitude; var lon1 = location1.Longitude; var lat2 = location2.Latitude; var lon2 = location2.Longitude; var y1 = WebMercatorProjection.LatitudeToY(lat1); var y2 = WebMercatorProjection.LatitudeToY(lat2); if (double.IsInfinity(y1)) { throw new ArgumentOutOfRangeException( nameof(location1), "The location1 argument must have an absolute latitude value of less than 90."); } if (double.IsInfinity(y2)) { throw new ArgumentOutOfRangeException( nameof(location2), "The location2 argument must have an absolute latitude value of less than 90."); } var dlat = lat2 - lat1; var dlon = lon2 - lon1; var dy = y2 - y1; // beta = atan(dlon,dy) // sec(beta) = 1 / cos(atan(dlon,dy)) = sqrt(1 + (dlon/dy)^2) var sec = Math.Sqrt(1d + dlon * dlon / (dy * dy)); const double secLimit = 1000d; // beta approximately +/-90° double s12; if (sec > secLimit) { var lat = (lat1 + lat2) * Math.PI / 360d; // mean latitude s12 = Math.Abs(dlon * Math.Cos(lat)); // distance in degrees along parallel of latitude } else { s12 = Math.Abs(dlat * sec); // distance in degrees along loxodrome } var n = (int)Math.Ceiling(s12 / resolution); var locations = new LocationCollection(new Location(lat1, lon1)); if (sec > secLimit) { for (var i = 1; i < n; i++) { var lon = lon1 + i * dlon / n; var lat = WebMercatorProjection.YToLatitude(y1 + i * dy / n); locations.Add(lat, lon); } } else { for (var i = 1; i < n; i++) { var lat = lat1 + i * dlat / n; var lon = lon1 + dlon * (WebMercatorProjection.LatitudeToY(lat) - y1) / dy; locations.Add(lat, lon); } } locations.Add(lat2, lon2); return locations; } } }