XAML-Map-Control/MapControl/Shared/AzimuthalProjection.cs

91 lines
3.4 KiB
C#
Raw Normal View History

// XAML Map Control - https://github.com/ClemensFischer/XAML-Map-Control
// © 2020 Clemens Fischer
// Licensed under the Microsoft Public License (Ms-PL)
using System;
2017-08-04 21:38:58 +02:00
#if WINDOWS_UWP
using Windows.Foundation;
#else
using System.Windows;
#endif
namespace MapControl
{
/// <summary>
/// Base class for azimuthal map projections.
/// </summary>
public abstract class AzimuthalProjection : MapProjection
{
public override Rect BoundingBoxToRect(BoundingBox boundingBox)
{
2020-04-16 23:15:03 +02:00
if (boundingBox is CenteredBoundingBox cbbox)
{
var center = LocationToMap(cbbox.Center);
return new Rect(
center.X - cbbox.Width / 2d, center.Y - cbbox.Height / 2d,
cbbox.Width, cbbox.Height);
}
return base.BoundingBoxToRect(boundingBox);
}
public override BoundingBox RectToBoundingBox(Rect rect)
{
var center = MapToLocation(new Point(rect.X + rect.Width / 2d, rect.Y + rect.Height / 2d));
return new CenteredBoundingBox(center, rect.Width, rect.Height); // width and height in meters
}
/// <summary>
2018-12-20 21:55:12 +01:00
/// Calculates azimuth and spherical distance in radians from location1 to location2.
/// The returned distance has to be multiplied with an appropriate earth radius.
/// </summary>
public static void GetAzimuthDistance(Location location1, Location location2, out double azimuth, out double distance)
{
var lat1 = location1.Latitude * Math.PI / 180d;
var lon1 = location1.Longitude * Math.PI / 180d;
var lat2 = location2.Latitude * Math.PI / 180d;
var lon2 = location2.Longitude * Math.PI / 180d;
var cosLat1 = Math.Cos(lat1);
var sinLat1 = Math.Sin(lat1);
var cosLat2 = Math.Cos(lat2);
var sinLat2 = Math.Sin(lat2);
var cosLon12 = Math.Cos(lon2 - lon1);
var sinLon12 = Math.Sin(lon2 - lon1);
var cosDistance = sinLat1 * sinLat2 + cosLat1 * cosLat2 * cosLon12;
azimuth = Math.Atan2(sinLon12, cosLat1 * sinLat2 / cosLat2 - sinLat1 * cosLon12);
distance = Math.Acos(Math.Min(Math.Max(cosDistance, -1d), 1d));
}
/// <summary>
2018-12-20 21:55:12 +01:00
/// Calculates the Location of the point given by azimuth and spherical distance in radians from location.
/// </summary>
public static Location GetLocation(Location location, double azimuth, double distance)
{
var lat = location.Latitude;
var lon = location.Longitude;
if (distance > 0d)
{
var lat1 = lat * Math.PI / 180d;
var sinDistance = Math.Sin(distance);
var cosDistance = Math.Cos(distance);
var cosAzimuth = Math.Cos(azimuth);
var sinAzimuth = Math.Sin(azimuth);
var cosLat1 = Math.Cos(lat1);
var sinLat1 = Math.Sin(lat1);
var sinLat2 = sinLat1 * cosDistance + cosLat1 * sinDistance * cosAzimuth;
var lat2 = Math.Asin(Math.Min(Math.Max(sinLat2, -1d), 1d));
var dLon = Math.Atan2(sinDistance * sinAzimuth, cosLat1 * cosDistance - sinLat1 * sinDistance * cosAzimuth);
lat = lat2 * 180d / Math.PI;
lon += dLon * 180d / Math.PI;
}
return new Location(lat, lon);
}
}
}